Висота, проведена з вершини тупого кута рівнобічної трапеції, ділить більшу основу на частини, які мають довжину 5 см і 2 см. Обчислити меншу основу трапеції. варіанти відповідей 3 см 3,5 см 7 см 1,5 см
Объяснение: Для нахождения угла, образованного высотой и основанием равнобедренного треугольника разделим длину высоты на длину боковой стороны и получим косинус угла: 53/106=0,5. Косинус 0,5 соответствует углу 30 градусов. В равнобедренном треугольнике высота, биссектриса и медиана, проведенные из вершины угла совпадают. Значит угол при вершине будет 30х2=60 градусов. Сумма двух других углов при основании равна 180-60=120 градусов. Величина одного угла будет равна 120/2=60 градусов. В этом треугольнике все углы по 60 градусов
4. треугольники BMN и BAC подобны (кажется по 2 признаку :-) ) отсюда находим MN BN/MN=BC/AC 15/MN=20/15 MN=(15*15)/20=11.25 5. один из углов равен 45°, значит треугольник прямоугольный равнобедренный - третий угол также равен 45° и катеты соответственно равны. Находим их по теореме Пифагора. 2*AC²=8² 2*AC²=64 AC²=32 AC=4√2 В прямоугольном равнобедренном треугольнике высота, проведенная к основанию, является также биссектрисой и медианой, т.е. делит гипотенузу пополам. Отсюда находим высоту СD по теореме Пифагора. AC²-AD²=CD² (4√2)²-4²=32-16=16=CD² → CD=4
6. угол А равен 60°, следовательно угол В равен 30°. По теореме синусов находим второй катет АС. АС/sin30°=BC/sin60° AC=(BC/sin60°)*in30°=6√2*0.5=3√2. По теореме Пифагора находим гипотенузу АВ. АВ²=AC²+BC²=18+36=54 AB=√54=√9*√6=3√6 Площадь прямоугольного треугольника равна половине произведения катетов, т.е. S=0.5*(6*3√2)=0.5*18√2=9√2 Высоту, опущенную из вершины С (например CD), можно найти из другой формулы нахождения площади треугольника: площадь треугольника равна половине произведения стороны треугольника на высоту, опущенную на эту сторону, т.е. S=0.5*AB*CD 9√2=0,5*3√6*CD Отсюда CD=9√2/(0,5*3√6)=2√3
ответ: 60 градусов.
Объяснение: Для нахождения угла, образованного высотой и основанием равнобедренного треугольника разделим длину высоты на длину боковой стороны и получим косинус угла: 53/106=0,5. Косинус 0,5 соответствует углу 30 градусов. В равнобедренном треугольнике высота, биссектриса и медиана, проведенные из вершины угла совпадают. Значит угол при вершине будет 30х2=60 градусов. Сумма двух других углов при основании равна 180-60=120 градусов. Величина одного угла будет равна 120/2=60 градусов. В этом треугольнике все углы по 60 градусов