Рассуждаем. Если один острый угол этого треугольника = 60 градусов, то другой острый угол = 90-60 = 30 градусов. Меньший катет тот, что лежит напротив меньшего острого угла. То есть это катет, который лежит против угла в 30 градусов. Вспомним свойство о том, что катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Тогда можно составить уравнение.
Треугольник АВС-прямоугольный, угол С =90º, угол А равен 30º. АС=а, DС перпендикулярно плоскости АВС. DС=а√3)/2. Чему равен угол между плоскостями АDВ и АСВ? ----- Искомый угол - двугранный. Чтобы найти величину двугранного угла или угла между плоскостями, нужно построить линейный угол и найти величину этого линейного угла. Линейный угол двугранного угла - угол, образованный двумя лучами на образующих его плоскостях, проведенными перпендикулярно к одной точке на линии пересечения этих плоскостей, т.е ребру двугранного угла. Проведем высоту СН в ∆ АВС. СН - проекция DН на АВС и по т. о треух перпендикулярах DH перпендикулярна АВ Угол DHC - искомый. В треугольнике АСН катет СН противолежит углу А и равен половине его гипотенузы АС как катет противолежащий углу 30º. СН=а/2.tg ∠DHC=DC/CH=[(a√3)/2]:(a/2)=√3- это тангенс 60º
Дано:
Прям. тр. с острым углом в 60 градусов;
Сумма гипотенузы и катета = 42см.
Найти:
Гипотенуза.
Рассуждаем. Если один острый угол этого треугольника = 60 градусов, то другой острый угол = 90-60 = 30 градусов. Меньший катет тот, что лежит напротив меньшего острого угла. То есть это катет, который лежит против угла в 30 градусов. Вспомним свойство о том, что катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Тогда можно составить уравнение.
2х+х=42
х=42:3
х=14
ответ: 14.
Если катет = 14см, то гипотенуза = 14*2 = 28см.
ответ: 28см.