Срешением и чертежом о-центр окружности. точки d и с лежат на окружности. dу - касательная к окружности, проходящая через точку d. угол еdс = 30 градусов. найти градусную меру угла осd
1)Треугольники АОК и РОС равны по трем углам: ∠АКР=∠КРС,∠РСА=∠САК как накрестлежащие при параллельных прямых ВС и АD и секущих, углы при О равны, как вертикальные. Следовательно, равны и треугольники АОВ и КОС по двум сторонам и углу между ними: АО=ОС, КО=ОР, углы при О - вертикальные. ⇒ РС=АК, АР=КС. Четырехугольник, в котором противоположные стороны попарно равны - параллелограмм. ----- 2) Площадь АРСК можно вычислить произведением высоты на основание. Высота этого параллелограмма, проведенная из вершины С к АК = СД. S =ah=AK*CD CD - катет прямоугольного треугольника с отношением сторон АС:АD:DC=13:12:х. Треугольник из Пифагоровых троек, и СD=5 ( проверить можно по т.Пифагора) S=4*5=20 (ед.площади) ----- 3) РК найдем из прямоугольного треугольника КРН, где РН⊥КD; РН=СD=5 По т.Пифагора КР= √(КН² +РН² )=√41 ---- 4) Одна из формул для нахождения площади параллелограмма S=0,5*d1*d2*sin(α) 20=0,5*AC*KP*sin α sin α=40:(13*√41)=40: (13*6,403) ≈ 0,4805 По таблице синусов это синус угла 28°43'
Точка пересечения биссектрис треугольника является центром окружности, вписанной в этот треугольник, а точка пересечения его серединных перпендикуляров — центром окружности, описанной около этого треугольника. Из теоремы о медиане равнобедренного треугольника следует, что только в равностороннем треугольнике биссектрисы углов треугольника совпадают с серединными перпендикулярами. Значит, центр окружности, вписанной в треугольник, совпадает с центром описанной около него окружности только для равностороннего треугольника
1. YD-касательная к окружности, следовательно YD перпендикулярна OD-радиусу этой окружности, следовательно угол ОDY=90 град.
2.Угол ОDC=ODY-CDY=90-30=60 град.
3.Треугольник СОD-равнобедренный, OC=OD-радиусы окружности. Следовательно угол ОDC=OCD=60 град.