30,40,110 градусов
Пусть А и С Основания перпендикуляров опущенных из точки М на стороны данного угла с вершиной О,Точка В Основание перепендикуляра опущенного из точки М на луч,проходящий между сторонами угла АОС причём АОВ = 30градус и СОВ =40градус.Из точек А В С отрезок ОМ виден под прямым углом значит эти точки лежат на окружности с диаметром ОМ Вписанные в эту окружность углы АСВ и АОВ опираются на одну и ту же дугу поэтому АСВ = АОВ = 30градус.Анологично ВАС=СОВ =40градус Следовательно АВС = 180градус - 30градус - 40=110
Объяснение:
Дано: ΔABC; ВС - высота горы; ∠BAC = 30°; ∠BDC = 45°; AD = 0,5 км.
Найти высоту горы BC.
Решение.
1) Расстоянием от точки до прямой является длина перпендикуляра, опущенного из этой точки на прямую.
⇒ BC⊥AC, ΔABC прямоугольный, ∠С = 90°, высота горы - катет BC.
2) В ΔABC ∠BAC = 30° (по условию), ∠ACB = 90°,
тогда ∠ABC = 180° - 30° - 90° = 60°.
Обозначим для удобства высоту горы катет ВС = x. В прямоугольном треугольнике катет, лежащий против угла 30° равен половине гипотенузы ⇒ гипотенуза AB = 2x км.
3) В ΔDBC ∠BDC = 45° (по условию), ∠DCB = 90°,
тогда ∠DBC = 180° - 90° - 45° = 45°. ⇒ ΔDBC равнобедренный, так как имеет два равных угла ⇒ DC = BC = x км.
4) Тогда в ΔABC сторона AC = x + 0,5 км.
Из ΔABC найти BC можно двумя
По теореме Пифагора: