ответ:Сумма смежных углов равна 180 градусов
Номер 1
а)<1=Х
<2=2Х
Х+2Х=180
3Х=180
Х=180:3
Х=60
<1=60 градусов
<2=60•2=120 градусов
б)<1=1
<2=0,8
1+0,8=1,8 частей
Одна часть равна
180:1,8=100
<1=100 градусов
<2=100•0,8=80 градусов
Номер 2
При пересечении двух прямых получается две пары вертикальных углов,противоположные углы равны между собой
а)<1=<3=21 градус,как вертикальные
<2=<4=(360-21•2):2=(360-42):2=
318:2=159 градусов,как вертикальные
б)Узнаём,чему равен 4 угол
360-325=35 градусов,тогда
<1=<3=35 градусов,как вертикальные
<2=<4=(360-35•2):2=(360-70):2=
290:2=145 градусов,как вертикальные
Объяснение:
AB=CD - по свойству параллелограмма ABCD
AB=2*DE=CD ⇒ точка Е - середина CD
CE=ED=AD=DM=MG ⇒ CD=DG
четыр-ник ECFG - параллелограмм
CE || FG, так как ED || FG - по свойству параллелограмма EDGFCE=FG, так как ED=FG - по свойству параллелограмма EDGFЗначит, СF=EG - по свойству параллелограмма ECFG
ΔCDG - равнобедренный ⇒ CM=GE - медианы, проведенные к боковым сторонам равнобедренного треугольника
Поэтому CF=CM
Продолжим прямую СM до пересечения с прямой FG в точке P
ΔCMD=ΔPMG - по стороне и двум прилежащим к ней углам
DM=MG - по условию∠CMD=∠PMG - как вертикальные углы∠CDG=∠PGD - как накрест лежащие углы при CD || PG и секущей DGЗначит, CM=MP, CD=PG
Рассмотрим ΔСPF: CF=CM=MP, PG=2*FG
FG/PG=1/2 и CF/CP=1/2
Известное свойство биссектрисы:
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам
Это свойство работает и в обратную сторону.
Следовательно, CG - биссектриса угла MCF, ч.т.д.