Пусть x - сторона куба. Площадь полной поверхности куба равна сумме площадей граней. Грани представляют из себя квадраты. Площадь квадрата см. Граней куба 6, поэтому площадь полной его поверхности см
Обозначим куб буквами ABCDA1B1C1D1, где ABCD - нижнее основание. Рассмотрим треугольник ABD. Найдем сторону BD. По теореме Пифагора
Рассмотрим треугольник DBB1, DB1=9см.
Находим площадь полной поверхности куба
см
ответ: площадь полной поверхности куба 162см
1. Соединим точки С и D с центром. Тогда треугольники AOD и ВОС равнобедренные (OA = OB = OC = OD как радиусы), ⇒
∠1 = ∠2 и ∠3 = ∠4.
∠2 = ∠3 как накрест лежащие при пересечении параллельных прямых AD и ВС секущей АВ. Но тогда в этих треугольниках равны и углы при вершине О. Значит треугольники AOD и ВОС равны по двум сторонам и углу между ними, ⇒
AD = BC.
2. Точки, находящиеся на данном расстоянии от данной прямой а, будут расположены на прямой, параллельной прямой а (красные прямые). В зависимости от расположения прямых задача может иметь одно решение (1), два решения (2) и не иметь решения (3).