Объяснение:
Номер 1.
V(кон)=1/3*S(осн)*h, S(осн)=П*r ²
S(осн)=П*3²=9П ; V(кон)=1/3*9П*6=18П
S(пол.конуса)= S(осн)+ S(бок)= П*r ²+ П*r*l
ΔАМО- прямоугольный , ∠МАО=45, значит ∠ОМА=45 ⇒ ΔАМО-равнобедренный ⇒ОМ=ОА=6 .Тогда МА=6√2
S(бок)= П*r*l , S(бок)=П*6*6√2=36П√2
S(пол.конуса)= 9П+36П√2=9П(1+4√2)
Номер 3.
V(цил)=S(осн)*h, S(осн)=П*r ² , S(бок цил)=2П*r *h
Пусть радиус основания r , тогда высота цилиндра (r+12)
288П=2П* r*(r+12)+2П*r ² ,
r ²+6r-72=0 , D=324, r=6 см, второе значение r<0 и не подходит по смыслу задачи.
h= 6+12=18(см)
S(осн)=П*6 ² =36П(см²)
V(цил)= 36П*18=648 (см³ )
Объяснение:
Номер 1.
V(кон)=1/3*S(осн)*h, S(осн)=П*r ²
S(осн)=П*3²=9П ; V(кон)=1/3*9П*6=18П
S(пол.конуса)= S(осн)+ S(бок)= П*r ²+ П*r*l
ΔАМО- прямоугольный , ∠МАО=45, значит ∠ОМА=45 ⇒ ΔАМО-равнобедренный ⇒ОМ=ОА=6 .Тогда МА=6√2
S(бок)= П*r*l , S(бок)=П*6*6√2=36П√2
S(пол.конуса)= 9П+36П√2=9П(1+4√2)
Номер 3.
V(цил)=S(осн)*h, S(осн)=П*r ² , S(бок цил)=2П*r *h
Пусть радиус основания r , тогда высота цилиндра (r+12)
288П=2П* r*(r+12)+2П*r ² ,
r ²+6r-72=0 , D=324, r=6 см, второе значение r<0 и не подходит по смыслу задачи.
h= 6+12=18(см)
S(осн)=П*6 ² =36П(см²)
V(цил)= 36П*18=648 (см³ )
Вертикальные углы находятся друг напротив друга, а рядом лежащие углы являются смежными, так как у них одна сторона общая, а не общие стороны лежат на одной прямой.
Равенство вертикальных углов является следствием определения смежных углов. Смежные углы по определению в сумме составляют 180°.
Возьмем любой угол, образованный двумя пересекающимися прямыми, обозначим его как ∠1 и примем его величину как a.
Тогда смежный ∠2 с ним будет равен 180° – a. Но у этого ∠2 с другой стороны есть другой смежный угол – ∠3. Его величина будет равна 180° минус величина ∠2. Но ∠2 у нас равен 180° – a, поэтому:
∠3 = 180° – ∠2 = 180° – (180° – a) = 180° – 180° + a = a
То есть ∠1 и ∠3 равны.
Можно продолжить и доказать, что ∠4 равен ∠2. Если ∠3 равен a, то ∠4, как смежный с ним, равен 180° – a.
На рисунке ниже доказательство выглядит несколько по-другому. ∠2 смежный и с ∠1, и с ∠3. Поскольку его величина постоянна, а сумма смежных углов равна 180°, то чтобы получить величину ∠2, надо из 180 вычитать одно и то же число, значит ∠1 = ∠3.