М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
малика2071
малика2071
27.05.2021 22:30 •  Геометрия

найдите неизвестные стороны и углы треугольника если АВ 15см ВС8см угол В96 градусов

👇
Открыть все ответы
Ответ:
pidarok2281
pidarok2281
27.05.2021
Площади подобных многоугольников относятся как квадрат коэффициента подобия
k² = S₂/S₁ = 10/9
k = √(10/9) = √10/3
Периметры подобных многоугольников относятся как коэффициент подобия
k = P₂/P₁ = √10/3
P₂ = P₁*√10/3
И по условию разность периметров равна 10 см
P₂ - P₁ = 10

P₁*√10/3 - P₁ = 10
P₁(√10/3 - 1) = 10
P₁ = 10/(√10/3 - 1)
Можно избавиться от иррациональности в знаменателе, домножив верх и низ дроби на (√10/3 + 1)
P₁ = 10*(√10/3 + 1)/((√10/3)² - 1) = 10*(√10/3 + 1)/(10/9 - 1) = 10*(√10/3 + 1)*9 = 30√10 + 90 см

P₂ - P₁ = 10
P₂ =  P₁ + 10 = 30√10 + 100 см
4,8(1 оценок)
Ответ:
julyyushchenko
julyyushchenko
27.05.2021

1) определение перпендикуляра и наклонной.

пусть дана плоскость и не лежащая на ней точка.

тогда:

·   отрезок прямой, перпендикулярной плоскости, соединяющий данную точку с точкой на плоскости называется перпендикуляром из данной точки к данной плоскости.

·   конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.

·   любой отрезок, соединяющий данную точку с точкой на плоскости и не являющийся перпендикуляром к плоскости, называется наклонной.

·   конец отрезка, лежащий в плоскости, называется основанием наклонной.

рис. 1.

на рисунке из точки а проведены к плоскости α перпендикуляр ав и наклонная ас. точка в - основание перпендикуляра, точка с - основание наклонной, вс - проекция наклонной ас на плоскость α.

2) доказательство того, что перпендикуляр корочек наклонной

 

на рисунке 2 изображена плоскость α, перпендикуляр к ней ao, наклонная ab, а также показан отрезок bo, соединяющий основания наклонной и перпендикуляра. отрезки ao, bo и ab образуют δaob.

рис. 2.

рассмотрим δaob, из определения перпендикуляра следует, что он прямоугольный. перпендикуляр ao является катетом этого треугольника, а наклонная ab – его гипотенузой. катет прямоугольного треугольника всегда меньше его гипотенузы (по теореме пифагора), следовательно, перпендикуляр всегда короче наклонной.

3) определение проекции

отрезок, соединяющий основания перпендикуляра и наклонной, проведенных из одной и той же точки, называется проекцией наклонной.

 

отрезок bo на рисунке 2 – является проекцией наклонной ab.

4) теорема о сравнительной длине наклонных и их проекций

а) любая наклонная больше своей проекции.

доказательство:

вновь рассмотрим δaob, изображенный на рис. 2, из определения перпендикуляра следует, что он прямоугольный. проекция bo является катетом этого треугольника, а наклонная ab – его гипотенузой, т. к. катет прямоугольного треугольника всегда меньше его гипотенузы, следовательно, проекция наклонной на плоскость всегда короче самой наклонной.

б) равные наклонные имеют равные проекции

доказательство: рассмотрим треугольники aob и aod, они равны, т. к. равны их гипотенузы ab и ad, и углы aob и aod (они прямые), а сторона ao у них общая. из равенства треугольников следует и равенство их сторон bo = od, что и требовалось доказать.

 

в) если проекции наклонных равны, то и наклонные равны. доказывается аналогично утверждению б.

г) большей наклонной соответствует большая проекция.

доказательство:

рассмотрим прямоугольные треугольники aob и aod, ab > ad.

=  

=  

но так как ab > ad => ab2 > ad2 => >   =>

=> bo > do. что и требовалось доказать.

 

д) из двух наклонных больше та, у которой проекция больше. доказывается аналогично г.

4,7(22 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ