не
Объяснение:
Вписане коло трикутника — це найбільше коло, розташоване в трикутнику, яке дотичне до трьох його сторін. Центр вписаного в трикутник кола називають інцентром. Інцентр також є точкою перетину бісектрис трикутника. Традиційно позначають латинською літерою I.
Центр вписаного кола можна знайти, як точку перетину трьох бісектрис внутрішніх кутів. Центр зовнівписаного кола можна знайти, як точку перетину бісектриси внутрішнього кута і двох бісектрис зовнішніх кутів. З цього випливає, що центр вписаного кола разом з трьома центрами зовнішніх вписаних кіл утворюють ортоцентричну систему.
1. 13
Объяснение:
1.
Проведём FH перпендикулярно DE следовательно треугольник FHE прямоугольный.Треугольник DCE прямоугольный следовательно треугольник FCE тоже прямоугольный.
EF- биссектриса следовательно угол 1 = углу 2.Следовательно FHE= FCE(по острому углу) следовательно FH=FC=13
ответ: 13
2.
Строим острый угол В. Из вершины угла проводим окружность радиусом равным катету, и отмечаем точку пересечения А. Так как треугольник — прямоугольный, то восстанавливаем перпендикуляр из точки А. Полученная точка пересечения С. Соединяем попарно вершины треугольника. Искомый треугольник построен.
(Рисунок в закрепе)
3.