Сумма 4-х углов четырехугольника равна 360. Поскольку в паралелограмме противоположные углы равны, значит сумма двух соседних углов равна 180. Отнимаем 46 и делим на 2, получаем один угол 67, второй (+46) равен 113.
можно так:
Такие углы не могут быть противолежащими, так как они не равны. Значит, они прилежащие и их сумма равна 180°. Пусть один из углов равен х, тогда другой равен х+46°, по условию. Следовательно х+(х+46)=180
В трапеции меньшая диагональ перпендикулярна основаниям сумма острых углов равна 90º. Найдите площадь трапеции, если ее основания 2 и 18. --------- Диагональ ВD делит трапецию на два прямоугольных треугольника. Сумма острых углов АВСD равна 90º ⇒ ∠ВАD+∠ВСD=90º В прямоугольном ∆ АВD ∠ВАD+∠АВD=90º ⇒ ∠АВD= ∠ВСD ⇒ прямоугольные ∆ АВD и ∆ ВСD подобны по равному острому углу. Из подобия треугольников следует отношение: АD:ВD=ВD:ВС ВD²=АD*ВС=18*2=36 ВD=6 ВD- высота трапеции S=BD*(AD+BC):2 S=6*(18+2):2=60 (ед. площади)
Сумма 4-х углов четырехугольника равна 360. Поскольку в паралелограмме противоположные углы равны, значит сумма двух соседних углов равна 180. Отнимаем 46 и делим на 2, получаем один угол 67, второй (+46) равен 113.
можно так:
Такие углы не могут быть противолежащими, так как они не равны. Значит, они прилежащие и их сумма равна 180°. Пусть один из углов равен х, тогда другой равен х+46°, по условию. Следовательно х+(х+46)=180
2х+46=180
2х=180-46
2х=134
х=67-первый,а второй х+46°=67+46=113 градусов