, где
— площадь треугольника, а
— его периметр.
треугольника по формуле
, где
— основание, а
— высота, проведенная к основанию
. Проведем к основанию
высоту
. Получился прямоугольный (
высота) треугольник с гипотенузой
(
— боковая стороны) и катетами
и
(так как треугольник равнобедренный, то высота, проведенная к основанию, является также медианой, то есть делит основание пополам, поэтому второй катет
). По теореме Пифагора найдем
:
, найдем численное значение
:

:

см.
перед решением нужно ещё и довольно громоздкое доказательство
площадь боковой поверхности равна произведению высоты боковой грани на полупериметр основания. Но нужно доказать, что высоты у всех граней равны.
Кроме того нужно доказать, что высота пирамиды проходит через центр вписанной окружности.
Здесь, по сути три задачи.
Площадь основания по формуле Герона = 48 кв.см
радиус вписанной окружности = площадь/п.периметр=48/16=3см
высота бок.грани = радиус/cos45=3√2
площ.боковая=3√2 * 16=48√2
ну и для полной добавить найденную площадь основания.
Для полного понимания, если вдруг захочется разобраться, читайте Атанасяна 2001, Геометрия-10, задачи 246-248