Проведем DM ⊥ BC.
Тогда по теореме о трех перпендикулярах КМ ⊥ ВС и будет являться расстоянием от точки К до катета ВС .
По условию ΔАВС - прямоугольный. Тогда ∠ АСВ= 90°, ∠DMC =90° по построению . Значит, DM ║AC и проходит через середину. Тогда точка М - середина катета ВС и отрезок DM является средней линией ΔАВС.
Средняя линия треугольника параллельна стороне и равна ее половине.
\begin{gathered}DM=\dfrac{1}{2} AC;\\DM=\dfrac{1}{2} \cdot 8=4\end{gathered}DM=21AC;DM=21⋅8=4
Тогда DM= 4 дм
Так как DК перпендикуляр к плоскости ΔАВС, то он перпендикулярен любой прямой, лежащей в этой плоскости.
Значит, DК⊥ DМ и Δ DМК - прямоугольный.
Найдем КМ по теореме Пифагора: в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
\begin{gathered}KM^{2} =KD^{2} +DM^{2}; \\KM= \sqrt{KD^{2} +DM^{2}} ;\\KM= \sqrt{3^{2} +4^{2} } =\sqrt{9+16} =\sqrt{25} =5\end{gathered}
5 дм
Объяснение:
19) Рассмотрим треугольник АОD - прямоуг.
Угол О = 90 градусов
Угол D = 90 - 65 (угол А) = 25 градусов (сумма острых углов в прямоугольном треугольнике)
Или
Угол D = 180 - 90 - 65 = 25 градусов
Рассмотрим треугольник СОВ.
Угол AOD = угол COB = 90 градусов (верт.)
Угол ОВС = 180 - 90 - 65 = 25 градусов
Угол В = 180 - 90 - 25 (угол ОВС) = 65 градусов
20) Рассмотрим треугольник QOC.
Угол QOC = 180 - Угол Q - угол С = 180 - 80 - 45 = 55 градусов
Рассмотрим треугольники QOC и MOR.
QO = OR
CO = OM
Угол QOC = угол MOR (верт.) = 55 градусов =>
Треугольники равны по I признаку равенства треугольников (2 стороны и угол между ними) =>
угол Q = угол R = 80 градусов
Угол С = угол М = 45 градусов