Чтобы найти периметр ромба, нужно найти лишь одну его сторону(в ромбе все стороны равны). Диагонали ромба точкой пересечения делятся пополам и пересекаются под прямым углом (по свойствам ромба). Итак, ромб поделён диагоналями на 4 равных прямоугольных треугольника, катеты которого равны 12/2=6 (см) и 16/2=8 (см) Теперь по теореме Пифагора находим сторону ромба ( в треугольнике она является гипотенузой). (см) Тогда Р=4*10=40 (см). Чтобы найти площадь ромба, достаточно площадь одного треугольника умножить на 4. Площадь прямоугольного треугольника: произведение катетов, делённое на 2. S=4*6*8/2=96 (см2)
Если треугольник прямоугольный, то квадрат гипотенузы равен сумме квадратов катетов ( по теореме пифагора). Наибольшую сторону, т.е. сторону в 37 см, примем за гипотенузу. = 1369
Итак, сумма квадратов катетов равна квадрату гипотенузе, т.е. треугольник прямоугольный.
Отрезок АМ = (2/3)*15 = 10 см. Находим стороны треугольника ВМС. МВ = 10√2 = 14.142136 см. МС = √(10²+17²) = √(100+289) = √389 = 19.723083 см. Площадь сечения BMC находим по формуле Герона: S = √(p(p-a)(p-b)(p-c)). a b c p 2p S 21 19.7231 14.1421 27.43261 54.8652 134.4656 см². cos A = 0.2653029 cos B = 0.4242641 cos С = 0.76053019 Аrad = 1.3022783 Brad = 1.1326473 Сrad = 0.706667049 Аgr = 74.615051 Bgr = 64.89591 Сgr = 40.48903943.
Эту задачу можно решить другим Надо найти высоту АН основания. Находим площадь основания: a b c p 2p So 21 17 10 24 48 84 см². Высота АН = 2S/ВС = 2*84/21 = 8 см. Высота МН в искомом сечении равна: МН = √(10²+8²) = √(100+64) = √164 = 12.8062 см. Отсюда площадь искомого сечения равна: S = (1/2)МН*ВС = (1/2)*12.8062*21 = 134.4656 см².
Есть и третий определения площади искомого сечения. Для этого надо найти cosα угла наклона секущей плоскости к основанию. S = So/cosα = 84/(8/√164 ) = 134.4656 см².
Надо провести высоту к основанию(она же будет медианой(делить основание на 2 равных отрезка) и биссектрисой угла, который находится напротив основания) теперь у нас есть 2 равных прямоугольных треугольника: рассмотрим один из них - боковая сторона р/б это гипотенуза,а один из его острых углов равен половине угла р/б при вершине. 84/2=42* теперь по т.синусов мы можем найти катет, который равен половине основания р/б(синусА=противолежащий катет/гипотенуза): синус 42=0,67 (округленно) 0,67=катет/20 катет=20*0,67 катет=13.4 см Основание р/б=2* 13.4 Основание р/б=26.8 периметр = 2*боковая сторона+основание периметр=2*20+26.8 периметр=66.8см
Диагонали ромба точкой пересечения делятся пополам и пересекаются под прямым углом (по свойствам ромба).
Итак, ромб поделён диагоналями на 4 равных прямоугольных треугольника, катеты которого равны 12/2=6 (см) и 16/2=8 (см)
Теперь по теореме Пифагора находим сторону ромба ( в треугольнике она является гипотенузой). (см)
Тогда Р=4*10=40 (см).
Чтобы найти площадь ромба, достаточно площадь одного треугольника умножить на 4. Площадь прямоугольного треугольника: произведение катетов, делённое на 2.
S=4*6*8/2=96 (см2)
Если треугольник прямоугольный, то квадрат гипотенузы равен сумме квадратов катетов ( по теореме пифагора). Наибольшую сторону, т.е. сторону в 37 см, примем за гипотенузу.
= 1369
Итак, сумма квадратов катетов равна квадрату гипотенузе, т.е. треугольник прямоугольный.