Дано:
NK=KL=LM
уголLNM=30°
Найти: уголК; уголL; уголM; уголN
уголLNM=уголKLN=30°(как накрест лежащие при KL||NM и секущей NL)
Т.к ∆NKL- равнобедренный(по условию), то уголKLN= уголKNL= 30°
Значит, уголN= уголKNL+уголLNM=30°+30°=60°
По свойству равнобедренной трапеции уголМ=уголN=60°
По свойству трапеции:
уголN+уголК=180°
уголК=180°-уголN=180°-60°= 120°; и
уголМ+уголL=180°
уголL=180°-уголМ=180°-60°= 120°
УголК=уголL(как углы при основании равнобедренной трапеции)
ответ: уголК=120°; уголL=120°; уголМ=60°; уголN=60°
Объяснение:
№3
Высота равнобедренной трапеции отсекает на большом основании отрезок - (16-6)/2= 5 см. Этот отрезок, боковая сторона и высота образуют прямоугольный треугольник с гипотенузой 13 см, катетом 5 см и другим катетом - высота. По т. Пифагора высота -
√(13²-5²)=12 см. Площадь -
S= 12*(6+16)/2=132 см².
№4
Треугольник АВС равнобедренный (АВ=ВС=25 см) с основанием АС=40 см. Высота, опущенная на основание является медианой. Треугольник, образованной высотой, боковой стороной и половиной основания - прямоугольный. Гипотенуза - боковая сторона 25 см, катет - половина основания - 40/2=20 см, второй катет - высота. По т. Пифагора второй катет -
√(25²-20²)=15 см;
площадь - S=15*40/2=300 см².
АС и B1D1 - это скрещивающиеся диагонали противоположных граней (оснований), поэтому расстояние между ними равно высоте призмы (или боковым ребрам).
ВВ1 = 5;
Что касатеся основного вопроса задачи, то ответ лежит на поверхности. Нужно найти угол (косинус) между плоскостями, перпендикулярными ВD1 и ВВ1 (это - плоскость основания :)). Поскольку эти прямые пересекаются в точке В, нужный угол очевидно равен углу D1BB1 - как бы не была расположена плоскость сечения и как бы не был построен искомый линейный угол двугранного угла, его стороны будут перпендикулярны сторонам угла D1BB1 .
Осталось найти диагональ BD1
BD1^2 = 12^2 + 31 + 5^2 = 200; BD1 = 10√2;
cos(угол D1BB1) = В1В/D1B = 5/(10√2) = √2/4;