Есть 4 вида:
Сумма двух векторов.
Дан вектор а и вектор b. Если от произвольной точки А отложить вектор АВ, равный вектору а, затем от точки В отложим вектор ВС, равный вектору b. Полученный вектор АС - это сумма векторов а и b. Это правило сложения векторов называется правилом треугольника.
Сумма векторов обозначается вектор а + вектор b.
Для любого вектора а справедливо равенство вектор а + нулевой вектор=вектор а.
Правило треугольника можно сформулировать и по другому, если А, В, С - произвольные точки, то вектор АВ + вектор ВС = вектор АС.
Законы сложения векторов. Правило параллелограмма.
Для любых векторов а, b и с справедливы равенства:
1. вектор а + вектор b = вектор b + вектор а (переместительный закон)
2. (вектор а + вектор b)+вектор с = вектор а + (вектор b+ вектор с) (сочетательный закон).
Правило параллелограмма: чтобы сложить неколлинеарные векторы а и b, нужно отложить от какой - нибудь точки А вектор АВ=вектору а и вектор AD=вектору b и построить параллелограмм. Тогда вектор АС = вектор а + вектор b.
Сумма нескольких векторов.
Сложение нескольких векторов производится следующим образом: первый вектор складывается со вторым, затем их сумма складывается с третьим вектором и т. д. Сумма нескольких векторов не зависит от того, в каком порядке они складываются.
Правило многоугольника: если А1,А2,...,Аn - произвольные точки плоскости, то вектор А1А2+вектор А2А3+...+векторАn-1An=вектор А1Аn
Вычитание векторов.
разностью векторов а и b называется такой вектор, сумма которого с вектором b равна вектору а. Таким образом, вектор а - вектор b = вектор а + вектор (-b).
Вектор -b - противоположный вектор, вектору b. Противоположные вектора - это вектора, которые имеют равные длины, но противоположно направленные.
Обозначается разность: вектор а - вектор b.
Объяснение:
y = ax 2 + bx + c ( a , b , c — числа , a ≠ 0)
с областью определения — множеством R всех действительных чисел.
Функция y = x2 является частным случаем квадратичной функции y = ax2 + bx + c при a = 1, b = 0, c = 0.
График квадратичной функции (как и график функции y = x2) называется параболой , а уравнение y = ax2 + bx + c (a ≠ 0) — уравнением этой параболы.
Стр. 221
График квадратичной функции и его свойства мы будем изучать, используя свойства графика функции y = x2.
При а ≠ 1, b = 0, c = 0 имеем еще один частный случай квадратичной функции y = ax2 + bx + c, т. е. функцию
y = ax2 (a ≠ 0, a ≠ 1).
Пусть a > 0. Приведем два примера функции y = ax2:
1) при a > 1; 2) при 0 < a < 1.