ответ: Задача имеет два решения
Объяснение:
Пусть один из катеров и гипотенуза равны 6 см и 8 см . Найти второй катет.
х^2+6^2= 8^2
x^2+36=64
x^2= 28
x=2√7 см
Пусть даны два катета 6 см и 8 см. Найти гипотенузу.
6^2+ 8^2= х^2
36+64=х^2
100=х^2
х=10 см
Объяснение:
а) стороны равны 10 см, 15 см и 25 см;
10+15=25 см
Такого треугольника не существует,т.к. сумма двух сторон = третьей,а должна быть больше третьей стороны.
б) стороны относятся как 3:5:10;
3х+5х=8х, 8х<10x ,значит и сумма длин этих сторон будет меньше третьей,а должна быть больше третьей стороны.Такого треугольника не существует.
в) углы равны 46°, 64° и 80°;
46°+ 64° + 80°=180° Существует,так как сумма всех углов Δ=180°
г) углы относятся как 3:5:10.
Существует 3+5+10=18, т.к.180°÷18=10°,если одной части соответствует 10°,то 18×10°=180°
Где х-гипотенуза.
36+64=x^2
100=x^2 следовательно х = 10.
Второе решение:
Где известна гипотенуза-6, катет 8.
6^2=8^2+x^2
Где х-второй катет
36=64+x^2
Такого быть не может, тк степень с четным показателем больше нуля, а при сложении 64 с четным числом всегда получается большк 36.
Третий вариант:
Где другой катет 6 а гипотенуза 8
8^2=6^2+х^2
64=36+х^2
28=х^2
Следовательно х= корень из 28
2 решения