Плоскость, параллельная стороне АС треугольника АВС, пересекает стороны АВ и ВС в точках А1 и С1 соответственно. АА1 : А1В = 3:2, А1С1=8 см. Найдите АС.
знак - у первого косинуса означает, что точка В проектируется на продолжение стороны АС за точку А. Пусть К - проекция В на продолжение АС. Пусть ВК = h; AK = x; тогда
угол ВАК = 180 - угол ВАС, то есть это острый угол, обозначим его Ф, и соs(Ф) = 4/5, откуда сразу находим sin(Ф) = 3/5, сtg(Ф) = 4/3; x = 4*h/3;
Для угла С все проще - cos(C) = 8/√73; откуда sin(C) = 3/√73; ctg(C) = 8/3;
И получается x + 4 = 8*h/3; Ну, это значит 4*h/3 = 4; h = 3; S = 3*4/2 = 6;
Некоторые спрашивают, как по синусу найти косинус... (sin(Ф))^2 + (cos(Ф))^2 = 1;
Центр вписанной окружности лежит на биссектрисе угла. Биссектриса - геом. место точек, равноудаленных от сторон угла. Если окружность касается сторон угла, ее центр удален от сторон угла на радиус, следовательно лежит на биссектрисе угла.
Радиус, проведенный в точку касания, перпендикулярен касательной. Расстояние от точки до прямой измеряется длиной перпендикуляра.
Если требуется док-во через треугольники, то проводим радиусы в точки касания, образованные треугольники равны по общей гипотенузе и катетам, острые углы равны.
знак - у первого косинуса означает, что точка В проектируется на продолжение стороны АС за точку А. Пусть К - проекция В на продолжение АС. Пусть ВК = h; AK = x; тогда
угол ВАК = 180 - угол ВАС, то есть это острый угол, обозначим его Ф, и соs(Ф) = 4/5, откуда сразу находим sin(Ф) = 3/5, сtg(Ф) = 4/3; x = 4*h/3;
Для угла С все проще - cos(C) = 8/√73; откуда sin(C) = 3/√73; ctg(C) = 8/3;
И получается x + 4 = 8*h/3; Ну, это значит 4*h/3 = 4; h = 3; S = 3*4/2 = 6;
Некоторые спрашивают, как по синусу найти косинус... (sin(Ф))^2 + (cos(Ф))^2 = 1;