2) Точки Е; М; К; Р – середины соответствующих отрезков АВ; АС; DС и DВ ( DСВА – тетраэдр). Найдите периметр четырёхугольника ЕМКР, если ВС = 8см, АD = 12см.
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Вроде так) 1)С двух треугольников. Один трегольник удерживается на бумаге(чтобы не скользил). Второй треугольник одной из своих сторон плотно прижимается к первому треугольнику ,передвигай треугольник, а параллельные прямые получаются черчением вдоль другой стороны второго треугольника.(или же аналогично с линейки и треугольника) 2)Аксиома - это утверждение,которое не требует доказательств.Например,две параллельные линии никогда не пересекутся или что через две точки можно провести только одну прямую:) 3)Это аксиома.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.