М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
beka9867
beka9867
02.10.2022 20:44 •  Геометрия

Найдите стороны параллеелограмма, если P=36


Найдите стороны параллеелограмма, если P=36
Найдите стороны параллеелограмма, если P=36

👇
Ответ:
liza7634578
liza7634578
02.10.2022

б) 1. Р = 2(DA+AB)=36 => DA+AB=18

2. Треугольник AED прямоугольный, так как угол АЕD = 90° по условию.

ЕD - катет, угол EAD =30° по условию => ED=1/2DA => DA=8

3. DA+AB=18 => AB=18-8=10

4. DA=CB=8, AB=DC=10, так как ABCD пара-м по условию.

ответ: 8, 10

с) 1. P=2(RQ+QS)=36 => RQ+QS=18

2. Треугольник MQS р/б, так как угол QMS=углу QSM по условию => MQ=QS

3. RQ+QS=18, RM+MQ=10, MQ=QS => RQ-RM=18-10=8 => QS=MQ=8

4. RQ=TS=10, QS=RT=8, так как RQST пара-м по условию.

ответ: 8,10

4,7(53 оценок)
Открыть все ответы
Ответ:
Ернур150400
Ернур150400
02.10.2022

Углы каждой пары равны между собой  (каквертикальные):

∠1=∠4,  ∠2=∠5,  ∠3=∠6.

Внешний угол треугольника равен сумме двух внутренних углов, несмежных с ним.

Поэтому ∠1=∠А+∠С,  ∠2=∠А+∠В, ∠3=∠В+∠С.

Отсюда сумма внешних углов треугольника, взятых по одному при каждой вершине, равна

∠1+∠2+∠3=∠А+∠С+∠А+∠В+∠В+∠С=2(∠А+∠В+∠С).

Так как сумма углов треугольника равна 180º, то ∠А+∠В+∠С=180º. Значит, ∠1+∠2+∠3=2∙180º=360º.

Когда задают вопрос: «Чему равна сумма внешних углов треугольника?», чаще всего имеют в виду именно сумму углов, взятых по одному при каждой вершине. Поэтому следует уточнить формулировку — нужно найти сумму углов, взятых по одному при каждой вершине или сумму всех внешних углов. Сумма всех шести внешних углов, соответственно, в два раза больше: ∠1+∠2+∠3+∠4+∠5+∠6=2(∠1+∠2+∠3)=720º.

4,6(78 оценок)
Ответ:
dizzone
dizzone
02.10.2022

Углы каждой пары равны между собой  (каквертикальные):

∠1=∠4,  ∠2=∠5,  ∠3=∠6.

Внешний угол треугольника равен сумме двух внутренних углов, несмежных с ним.

Поэтому ∠1=∠А+∠С,  ∠2=∠А+∠В, ∠3=∠В+∠С.

Отсюда сумма внешних углов треугольника, взятых по одному при каждой вершине, равна

∠1+∠2+∠3=∠А+∠С+∠А+∠В+∠В+∠С=2(∠А+∠В+∠С).

Так как сумма углов треугольника равна 180º, то ∠А+∠В+∠С=180º. Значит, ∠1+∠2+∠3=2∙180º=360º.

Когда задают вопрос: «Чему равна сумма внешних углов треугольника?», чаще всего имеют в виду именно сумму углов, взятых по одному при каждой вершине. Поэтому следует уточнить формулировку — нужно найти сумму углов, взятых по одному при каждой вершине или сумму всех внешних углов. Сумма всех шести внешних углов, соответственно, в два раза больше: ∠1+∠2+∠3+∠4+∠5+∠6=2(∠1+∠2+∠3)=720º.

4,7(100 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ