Рисунок надеюсь сам(а) нарисуешь. Решение: АС=АВ так как это касательные проведёные к окружности из одной точки. По свойству о касательных уголСАО=углуВАО. угол АВО= углу АСО=90 градусов. Если АС=АВ, то и АС=12. Тогда, по теореме Пифагора находим гипотенузу, тоесть АО. АО(в квадрате)= ОС (в квадрате) +АС (в квадрате) АО=225(под корнем)=15. ответ 15
либо:
Так как отрезки касательных, проведённых из одной точки к одной окружности, равны, то АВ = АС. Следовательно, АС = 12 см.
Рассмотрим треугольник ОВА: отрезок ОВ равен радиусу окружности, ОВ = 9 см. АВ = 12 см (по условию).
Угол АВО равен 90° (касательная к радиусу проходит под прямым углом). Значит, треугольник ОВА - прямоугольный.
По теореме Пифагора: АО² = AB² + BO² = 12² + 9² = 144 + 81 = 225.
Отсюда АО = √225 = 15 (см).
ответ: АС = 12 см, АО = 15 см.
1)Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник будет являться параллелограммом.
Объяснение:
Рассмотрим четырехугольник ABCD. Пусть в нем стороны AB и СD параллельны. И пусть AB=CD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.
Эти треугольники равны между собой по двум сторонам и углу между ними (BD - общая сторона, AB = CD по условию, угол1 = угол2 как накрест лежащие углы при секущей BD параллельных прямых AB и CD.), а следовательно угол3 = угол4.
А эти углы будут являться накрест лежащими при пересечении прямых BC и AD секущей BD. Из этого следует что BC и AD параллельны между собой. Имеем, что в четырехугольнике ABCD противоположные стороны попарно параллельны, и, значит, четырехугольник ABCD является параллелограммом.
2)Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник будет параллелограммом.
Доказательство:
Рассмотрим четырехугольник ABCD. Проведем в нем диагональ BD. Она разделит данный четырехугольник на два равных треугольника: ABD и CBD.
Эти два треугольника буду равны между собой по трем сторонам (BD - общая сторона, AB = CD и BC = AD по условию). Из этого можно сделать вывод, что угол1 = угол2. Отсюда следует, что AB параллельна CD. А так как AB = CD и AB параллельна CD, то по первому признаку параллелограмма, четырехугольник ABCD будет являться параллелограммом.
3)Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник будет являться параллелограммом.
Рассмотрим четырехугольник ABCD. Проведем в нем две диагонали AC и BD, которые будут пересекаться в точке О и делятся этой точкой пополам.
Треугольники AOB и COD будут равны между собой, по первому признаку равенства треугольников. (AO = OC, BO = OD по условию, угол AOB = угол COD как вертикальные углы.) Следовательно, AB = CD и угол1 = угол 2. Из равенства углов 1 и 2 имеем, что AB параллельна CD. Тогда имеем, что в четырехугольнике ABCD стороны AB равны CD и параллельны, и по первому признаку параллелограмма четырехугольник ABCD будет являться параллелограммом.
Подробнее - на -
х + 14 - другой.
По теореме Пифагора составим уравнение:
x² + (x + 14)² = 26²
x² + x² + 28x + 196 = 676
2x² + 28x - 480 = 0
x² + 14x - 240 = 0
D/4 = 49 + 240 = 289
x = - 7 + 17 = 10 или x = - 7 - 17 = - 24 не подходит по смыслу задачи
х + 14 = 24
Катеты равны: 10 и 24.