1
а)
<АСВ=<АВС=36 градуса, т. к тр-к АВС - равнобедренный
<DCE=< ACB =36 градуса - как вертикальные
б)
Тр-к АВС - равнобедренный
АС=АВ=25 см
Р=90 см
Р=2×АС+ВС
90=2×25+ВС
90=50+ВС
ВС=90-50
ВС=40 см
ответ : ВС=40 см
2
Тр-к КМN и тр-к NPK
MK=PN - по условию
МN=PK - по условию
КN - общая
Тр-ки равны по 3 сторонам, значит соответствующие элементы равны, следовательно, <КМN=<KPN
3
Тр-к ВСD - равнобедренный, значит
ВС=СD
АВ=АD
CA - общая
Тр-ки АСВ и тр-к АСD равны по 3 сторонам, значит соответствующие элементы равны, следовательно,
<АСВ=<АСD
:
Тр-к ВАD - равнобедренный, т. к АВ=АD, значит
<АВD=<ADB
Тр-к ВСD - равнобедренный, т. к ВС=СD, значит
<СВD=<CDB
<CBA=<CBD-<ABD
|| ||
<CDB=<CDB-<ADB, значит
<СВА=<СDB
Тр-к АСВ и АСD:
<CBA=<CDB
BC=DC
AB=AD
Тр-ки равны по 2 сторонам и углу между ними, значит соответствующие элементы равны, следовательно <АСВ=<АСD
4
Тр-к ВАD - равнобедренный
АК - медиана
ВК=DK
Тр-к ВСD - равнобедренный
CK также является медианой, т, к ВК=DK
C ; K и А лежат на одной прямой
Ptkem = 16 см.
объяснение:
В условии допущена описка.Площадь измеряется в кавдратных единицах, следовательно, площадь грани тетраэдра равна
S = 16√3 см².
Тетраэдр называется правильным, если все его грани - равносторонние треугольники. Тогда сторону тетраэдра найдем из формулы площади правильного треугольника:
S = (√3/4)*a², где а - сторона треугольника.
а² = 4*S/√3 = 4*16√3/√3 = 64 см² => a = 8см.
Точки T,K, и Е - середины ребер DB, DC и AC соответственно, следовательно, отрезки ТК и КЕ - средние линии треугольников - граней тетраэдра BDC и СDA и равны половинам сторон ВС и AD.
Построим сечение тетраэдра плоскостью ТКЕ. Плоскость BDC пересекается плоскостью TKE по линии ТК, параллельной прямой ВС. Но прямая ВС принадлежит и плоскости АВС. Следовательно, плоскость АВС пересечется плоскостью ТКЕ, проходящей через точку Е по прямой ЕМ, параллельной прямой ВС, а отрезок ЕМ является средней линией треугольника АВС. ЕМ = 4см. Соединив точки Т и М (середины сторон АВ и BD), получим сечение тетраэдра плоскостью ТКЕ - четырехугольник ТКЕМ, все стороны которого равны между собой и равны 4 см.
Периметр сечения Ptkem = 4*4 = 16 см.
Теорема 1 (теорема Пифагора). В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы, то есть
c2 = a2 + b2,
где c — гипотенуза треугольника.
Теорема 2. Для прямоугольного треугольника (рис. 1) верны следующие соотношения:
a = c cos β = c sin α = b tg α = b ctg β,
где c — гипотенуза треугольника.
Теорема 3. Пусть ca и cb — проекции катетов a и b прямоугольного треугольника на гипотенузу c, а h — высота этого треугольника, опущенная на гипотенузу (рис. 2). Тогда справедливы следующие равенства:
h2 = ca∙cb, a2 = c∙ca, b2 = c∙cb.
Теорема 4 (теорема косинусов). Для произвольного треугольника справедлива формула
a2 = b2 + c2 – 2bc cos α.
Теорема 5. Около всякого треугольника можно описать окружность и притом только одну. Центр этой окружности есть точка пересечения серединных перпендикуляров, проведенных к сторонам. Центр описанной окружности лежит внутри треугольника, если треугольник остроугольный; вне треугольника, если он тупоугольный; на середине гипотенузы, если он прямоугольный (рис. 3).
Теорема 6 (теорема синусов). Для произвольного треугольника (рис. 4) справедливы соотношения
Теорема 7. Во всякий треугольник можно вписать окружность и притом только одну (рис. 5).
Центр этой окружности есть точка пересечения биссектрис трех углов треугольника. Центр вписанной окружности лежит всегда внутри треугольника.
Теорема 8 (формулы для вычисления площади треугольника).
4
Последняя формула называется формулой Герона.
Теорема 9 (теорема о биссектрисе внутреннего угла).
Биссектриса внутреннего угла треугольника (рис. 6) делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника, то есть
b : c = x : y.
Теорема 10 (формула для вычисления длины биссектрисы) (см. рис. 6)
.
Теорема 11 (формула для вычисления длины биссектрисы).
Теорема 12. Медианы треугольника пересекаются в одной точке и делятся в этой точке на отрезки, длины которых относятся как 2 : 1, считая от вершины (рис. 7).
Теорема 13 (формула для вычисления длины медианы).
Доказательства некоторых теорем
Доказательство теоремы 10. Построим треугольник ABC и проведем в нем биссектрису AD (рис. 8). Пусть CD = x и DB = y. Применим к треугольникам ABD и ACD теорему косинусов: