∠К = ∠Т = 48°, ∠L = 84°
Объяснение:
1) Рассмотрим △KLT. По условию, он равнобедренный и
КT - основание треугольника. Но углы при основании в равнобедренном треугольнике равны, т.е.
∠К = ∠Т
Сумма всех углов △-ка равна 180°:
∠К +∠Т + ∠L = 180° или 2∠К +∠L = 180°, откуда
∠L = 180° - 2∠К (1)
2) Рассмотрим △ТМL
∠L +∠ТМL + ∠LТМ = 180°, но (2)
∠LТМ= ½∠Т , а, поскольку ∠Т = ∠К (см. выше), то
∠LТМ= ½∠К
∠ТМL = 72° по условию. Подставим эти значения в выражение 2.
∠L + 72°+ ½∠К = 180° → 2∠L + ∠К = 2 (180°- 72°) = 360° -144°
Подставим в это выражение значение ∠L из (1):
2*(180° - 2∠К ) + ∠К = 360° -144°
360° - 4∠К + ∠К = 360° -144°
- 3∠К = -144°
∠К = 144°/3 = 48°
∠К = ∠Т = 48°
∠L = 180° - 2∠К = 180° -2* 48° = 180° - 96° = 84°
30° и 70°
Объяснение:
Обозначим угол за Х.
Возможны 2 варианта:
1) Вторые стороны этих углов лежат по разные стороны относительно общего луча
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен их сумме:
Х = 50 + 20 = 70°
2) Вторые стороны этих углов лежат по одну и ту же сторону относительно общего луча.
Тогда угол, образованный не-общими сторонами углов в 20° и 50° будет равен разности 50° и 20°:
Х = 50 - 20 = 30°
З.Ы.: Возможен еще и третий вариант!
Если мы рассматриваем эти углы в пространстве (3-мерном), а не на плоскости, то не-общие стороны этих двух углов могут образовывать друг с другом, в принципе, любой угол - но! - в пределах, ограниченных между 30° и 70°
d1=3x
d2=4x
a=20
Найти: d1, d2, r
Решение: d1^2 + d2^2 = 4*a^2
(3х)^2 + (4x)^2 = 1600
9x^2+16x^2 = 1600
25x^2 = 1600
x^2=64
х=8
d1=3*8=24
d2=4*8=32
S=d1*d2 / 2 = 24*32 : 2 = 384
r=S/2а = 384 / 40 = 9,6
ответ: диагонали равны 24 и 32, радиус вписанной окружности равен 9,6.