6. Кути АОВ і СОВ суміжні, причому кут AOB=108°. З точки О про- ведено промінь OD так, що кут COD = 126°. Чи є промінь OD бісектри- сою кута АОВ ? Відповідь обгрунтуйте.
Так как ΔАВС равнобедренный, то АВ₁ = В₁С = ВА₁ = А₁С ∠САВ = ∠СВА как углы при основании равнобедренного треугольника, АВ - общая сторона для ΔАВ₁В и ΔВА₁А, значит ΔАВ₁В = ΔВА₁А по двум сторонам и углу между ними, ⇒ АА₁ = ВВ₁. Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины, значит АО = ОВ. Обозначим АО = ОВ = х. ∠АОВ = 180° - 60° = 120° (смежные) Из ΔАОВ по теореме косинусов: АВ² = AO² + BO² - 2·AO·BO·cos120° 36 = x² + x² - 2 · x · x · (- 1/2) 2x² + x² = 36 3x² = 36 x² = 12 x = √12 = 2√3 АО = 2√3 см - это 2/3 от длины АА₁. Значит АА₁ = 3/2 · АО = 3/2 · 2√3 = 3√3 см
а) Векторы ВВ1 и В1С совпадают с катетом и гипотенузой прямоугольного треугольника BВ1С, следовательно, ВВ1С=45°.б) BD = B1D1 , т.к. они сонаправлены и имеют одинаковую длину. BD = B1D1 =- DB .Угол между DB и DA — угол между стороной и диагональю квадрата, т.е. α=45°. Тогда угол междуDA и B1D1 равен 135°.в) A1C1 и A1B совпадают со сторонами равностороннего треугольника АВС и отложены из одной точки. Следовательно, угол 60°.г)(угол между стороной и диагональюквадрата).д)е)Пусть О — точка пересечения диагоналей В1С и ВС1,квадрата ВВ1С1С.следовательно,ж)следовательно,з)следовательно, угол между ними равен 180°Не знаете как решить? Можете с решением? Заходите и спрашивайте.
АВ₁ = В₁С = ВА₁ = А₁С
∠САВ = ∠СВА как углы при основании равнобедренного треугольника,
АВ - общая сторона для ΔАВ₁В и ΔВА₁А, значит
ΔАВ₁В = ΔВА₁А по двум сторонам и углу между ними, ⇒
АА₁ = ВВ₁.
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины, значит АО = ОВ.
Обозначим АО = ОВ = х.
∠АОВ = 180° - 60° = 120° (смежные)
Из ΔАОВ по теореме косинусов:
АВ² = AO² + BO² - 2·AO·BO·cos120°
36 = x² + x² - 2 · x · x · (- 1/2)
2x² + x² = 36
3x² = 36
x² = 12
x = √12 = 2√3
АО = 2√3 см - это 2/3 от длины АА₁. Значит
АА₁ = 3/2 · АО = 3/2 · 2√3 = 3√3 см