S(∆DCB)=270ед²
S(∆BOA)=96ед²
S(∆DBA)=150ед²
S(∆DKA)=84ед²
Объяснение:
Рассмотрим треугольник ∆DCB.
Теорема Пифагора
DB=√(DC²-CB²)=√(39²-36²)=√(1521-1296)=
=√225=15ед.
S(∆DCB)=½*DB*CB=½*36*15=270ед².
Рассмотрим треугольник ∆ВОА
S(∆BOA)=½*BO*OA=½*12*16=96ед²
Теорема Пифагора
ВА=√(ВО²+ОА²)=√(12²+16²)=√(144+256)=
=√400=20ед.
Рассмотрим треугольник ∆DBA
<DBA=90°
DB=15ед
ВА=20ед.
S(∆DBA)=½*DB*BA=1/2*15*20=150ед²
Теорема Пифагора
DA=√(DB²+BA²)=√(15²+20²)=√(225+400)=
=√625=25ед.
Рассмотрим треугольник ∆DKA.
DA=25ед
По теореме Пифагора
DK=√(DA²-KA²)=√(25²-24²)=√(625-576)=
=√49=7ед.
S(∆DKA)=½*DK*KA=1/2*7*24=84ед²
ответ:100 см²
Объяснение: В четырехугольник можно вписать окружность ( или круг) тогда и только тогда. когда суммы противоположных сторон равны.
Трапеция АВСD - четырехугольник. ⇒
ВС+АD=АВ+AD=14+11=25 (см).
Высота трапеции равна диаметру вписанной окружности. ⇒ ВН=2r=2•4=8
Площадь трапеции равна произведению высоты и полусуммы оснований.
S=h•(a+b)/2=8•25/2=100 см².
----------------------
Как видим, для нахождения площади отношение оснований трапеции является лишним. Но для нахождения длин сторон пригодится.
Примем коэффициент отношения ВС:АD равным а.
Тогда ВС=2а, АD=3а.
ВС+АD=5a=25 (см. выше). ⇒ а=5. ⇒
ВС=2•5=10 см
АD=3•5=15 см.