Тут через теоремку пифагорчика.
Мы знаем что это ПРЯМОУГОЛЬНАЯ трапеция, значит меньшая боковая сторона это высота, значит мы можем от конца меньшего основание провести еще одну высоту и мы получим прямоугольник треугольник
(найдем отрезок, который разделился при проведения высоты)
22-10=12 дм
Теперь мы знаем, что катеты равны 5 дм и 12 дм
Теорема Пифагора, с=sqrt(b^2+a^2) ( сори ,что написал в стиле информатики, sqrt - корень)
с=sqrt(25+144)
c=sqrt169
c= 13 дм
ответ: большая боковая сторона равна 13 дм
AC:16=7:3––АС=16•7:3=28 см
Объяснение:
Примем коэффициент отношения отрезков на АВ равным а,Так как AM : MB = 3:4, то АВ=АМ+ВМ=7а ⇒ AM:AB = 3:7.
CN:CB = 3:7- дано.
а) Точки М и N лежат в плоскости ∆ АВС и в плоскости α. ⇒MN - линия пересечения этих плоскостей.
МN и АС высекают на прямых АВ и ВС пропорциональные отрезки.
Из обобщённой теоремы Фалеса: если отрезки, высекаемые прямыми на одной прямой, пропорциональны отрезкам, высекаемым теми же прямыми на другой прямой, то эти прямые параллельны.⇒ АС║MN.
Если прямая (АС), не лежащая в плоскости α, параллельна некоторой прямой (MN), которая лежит в плоскости α, то прямая параллельна плоскости . ⇒АС || α
б) Т.к. MN║AC, углы при их пересечении секущими АВ с одной стороны и ВС с другой равны как соответственные. Отсюда следует подобие треугольников MBN и ABC с коэффициентом подобия k=BC:NC=7:3 ⇒ AC:MN=7:3
AC:16=7:3––АС=16•7:3=28 см