Около окружности радиуса 4√3 см описан правильный треугольник .На его высоте как на стороне построен правильный шестиугольник , в который вписана другая окружность. Найдите ее радиус.
Объяснение:
Обозначим радиус вписанной в треугольник окружности r₃=4√3 см. Найдем 1)сторону правильного треугольника ;2) и его высоту :
a₃ = 2r √3 , a₃ = 2*4√3*√3=24 (см). Тогда половина стороны 12 см.
По т. Пифагора высота правильного треугольника
h₃=√(24²-12²)=12√3 (см) ⇒ по условию это сторона правильного шестиугольника а=12√3 см.
Найдем радиус вписанной окружности в правильный шестиугольник
r=(а√3)/2 , r=( 12√3* √3)/2 =18 (см)
Примечание Высота в правильном треугольнике является медианой.
а) линейный угол двугранного угла строится так:
-берется точка на ребре двугранного угла( на рис.5 это ребро АС) и из нее в гранях строятся перпендикуляры к этому ребру. Угол между этими перпендикулярами и будет линейный угол двугранного угла
Поэтому если я докажу что BD⊥AC и PD⊥AC, то тогда искомый линейный угол и будет BDP
ΔABC-правильный, в нем медиана BD и высота и биссектриса, если высота, значит BD⊥AC
РВ⊥(ABC), значит ΔАВР=ΔВСР(по 2 сторонам и углу между ними)
Значит АР=РС и ΔАРС-равнобедренный и медиана PD в нем является и высотой, значит PD⊥AC.
Значит <PDB-линейный угол двугранного угла