KPNM - трапеция, PN║KM , KM=16 . AK=AN , BM=BP , AB=5 . Продолжим отрезок АВ до пересечения его со сторонами трапеции КР и NM . Получим отрезок СД. Так как средняя линия трапеции проходит и через середины диагоналей трапеции, то отрезок АВ лежит на средней линии, которой будет отрезок СД и тогда АВ║КМ. Точка Д - середина NM, т.к. она лежит на продолжении АВ и тогда АД║КМ. По теореме Фалеса стороны ∠KNM пересечены параллельными отрезками АД и КМ ⇒ точка Д - середина NM, раз точка А - середина KN. Аналогично, точка С - середина КР . ΔKNM: BД - средняя линия ΔKNM ,BД║КМ, ВД=1/2*КМ=1/2*16=8. ΔKPM: CB - средняя линия ΔKPM , CB║KM , CB=1/2*КМ=1/2*16=8. СА=СВ-АВ=8-5=3 ВД=ВД-АВ=8-5=3 СД=СА+АВ+ВД=3+5+3=11 Средняя линия СД=(КМ+PN)/2=(16+PN)/2=11 , 16+PN=2*11 16+PN=22 PN=6 Если знать свойство: длина отрезка, соединяющего середины диагоналей трапеции, равна полуразности ее оснований, то можно решить быстрее. АB=(КМ-PN)/2 , 5=(16-PN)/2 , 16-PN=10 , PN=6 .
Дано:ABCD - ромб.AB = 5 см.BD = 6 см.OK ⊥ ABCD.Найти KA, KB, KC, KD. Решение:О - точка пересечения диагоналей. Значит AO = CO, BO = DO = 3 см.Рассмотрим треугольники BOK и DOK. Они оба прямоугольные, т.к. OK - перпендикуляр. Сторона OK общая, BO = DO. Значит, эти треугольники равны и KB = KD. Из треугольника BOK по т. Пифагора KB = √(64+9) = √(73) см. Найдём диагональ AC. Сумма квадратов диагоналей ромба равна квадрату стороны, умноженному на 4.AC^2+BD^2 = 4*AB^2AC^2 +36 = 4*25AC^2 = 64AC = 8 см.Тогда AO =CO = 4 см.Треугольники AKO и CKO равны, т.к. прямоугольные, KO - общая сторона, AO = CO. Из треугольника CKO по т. ПифагораKC = √(64+16) = √(80) см.
Длина дуги = пи х R x n/180 = пи х 6 х 135/180 = 4,5 пи