дано: авсд-трапеция (ад-ниж. осн-е), ав=сд, ас пер-на сд, ад=16v3,угол а=60 гр.
найти: sавсд
решение:
1) рассмотрим тр-к сад: угол сад=30 гр, значит, сд=ад/2,сд=8v3.
2) проведём высоты трапеции вв1 и сс1.рассмотрим тр-к сс1д: угол д=углу а (т. к. трапеция равнобедр.); угол дсс1=30 гр, с1д=сд/2,с1д=4v3.по т. пифагора h=сс1=12.
3)ав1=с1д (равнобедр. трапеция). вс=в1с1=ад-ав1-с1д; вс=8v3.
4)sabcd=(bc+ad)*h/2; sabcd=(8v3+16v3)*12/2=144v3.
otvet: 144v3.
Добавляешь угол 6, вертикальный с углом 5, угол 7 смежный с углом 1(он должен быть слева) и отмечаешь левую секущую буквой с, а правую буквой с с индексом 1
/_(значок угла)
1./_5=/_6=80°(по свойству вертикальных углов)
2. /_6 и /_4 - равные накрест лежащие углы, образованные секущей c при прямых a и b, а значит a || b по 1-му признаку параллельности прямых (если накрест лежащие углы равны, то прямые параллельны, возможно у вас это другой по счёту)
3./_3=/_7=180° (свойство параллельных прямых)
4./_1=180°-/_7=180°-125°=55°(свойство смежных углов)
5./_2=180°-/_3=180°-125°=55°(свойство смежных углов)
6. /_1-/_2=55°-55°=0°
Не знаю почему так получилось, вроде всё правильно делал