Поставьте циркуль в середину основания и проведите окружность радиусом, равным медиане. Основание автоматически станет диаметром. А угол при противоположной вершине будет опираться на диаметр, то есть будет прямым, где бы вершина не находилась.
Можно и так - если достроить треугольник до параллелограма, то диагонали в нем будут равны, а это бывает только в прямоугольнике.
Можно и так - основание медианы равноудалено от вершин треугольника, значит, оно лежит на перпендикуляре, проходящем через середину стороны (любой, к которой медиана НЕ проведена). То есть средняя линяя треугольника перпендикулярна другой стороне. То есть треугольник прямоугольный.
проведем образующие через концы отрезка АВ. Плоскость, проходящая через эти образующие, параллельна оси. Поэтому минимальное расстояние между осью и АВ равно расстоянию до этой плоскости.
"Вид сверху" делает это построение понятным совсем - отрезок проектируется на основание, и искомое расстояние равно расстоянию от центра до линии проекции.
Таким образом, нам надо найти длину хорды-проекции отрезка АВ на основание. Образующая, эта проекция и сам отрезок образуют прямоугольний треугольник с катетом 6 и гипотенузой 10. Следовательно второй катет равен 8, и нам надо найти расстояние от центра окружности радиусом 5 до хорды длиной 8. (Опять любимое заклинание :)) Это расстояние находитс из прямоугольного треугольника, в котором гипотенуза - радиус 5, а один из катетов это половина хорды, то есть 4, поэтому
ответ 3.