М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
petrius100p0bmz5
petrius100p0bmz5
31.12.2021 22:44 •  Геометрия

Составить уравнение окружности, диаметром которой служит отрезок, отсекаемый на оси абцисс параболой y=9+2x-x^2​

👇
Ответ:
Andrey346563545
Andrey346563545
31.12.2021
Чтобы составить уравнение окружности, диаметром которой служит отрезок, отсекаемый на оси абцисс параболой y=9+2x-x^2​​, мы должны использовать связь между уравнениями окружности и параболы.

Аналитическое уравнение окружности имеет следующий вид:

(x - h)^2 + (y - k)^2 = r^2,

где (h, k) - координаты центра окружности, а r - радиус окружности.

Для того чтобы найти координаты центра окружности, мы должны найти середину отрезка, который определяется параболой на оси абцисс.

Для начала, найдем вершины параболы. В общем виде уравнение параболы имеет вид y = ax^2 + bx + c. Мы можем представить данную параболу в виде, учитывая, что коэффициент при x^2 равен -1:

y = -x^2 + 2x + 9.

Для того чтобы найти вершины параболы, мы можем использовать формулу x = -b/(2a). В данной параболе a = -1, b = 2, а c = 9. Подставим значения и найдем x:

x = -2/(2*(-1)) = 1.

Подставляем найденное значение x в уравнение параболы и находим y:

y = -1^2 + 2*1 + 9 = -1 + 2 + 9 = 10.

Таким образом, вершина параболы имеет координаты (1, 10).

Так как нам нужно найти середину отрезка, то мы должны найти середину между вершиной параболы и точкой пересечения параболы с осью абсцисс. Точка пересечения с осью абсцисс имеет координаты (x, 0), где x - это решение уравнения y = -x^2 + 2x + 9 = 0.

Решим уравнение -x^2 + 2x + 9 = 0. Приравниваем уравнение к нулю:

-x^2 + 2x + 9 = 0.

Переносим все элементы в левую часть уравнения:

x^2 - 2x - 9 = 0.

Решим это квадратное уравнение, используя квадратное уравнение -бер = b^2 - 4ac.
a = 1, b = -2, c = -9.

D = b^2 - 4ac = (-2)^2 - 4*1*(-9) = 4 + 36 = 40.

Так как D > 0, то у уравнения есть 2 действительных корня.

x_1 = (-b + √D)/(2a) = (-(-2) + √40)/(2*1) = (2 + √40)/2 = 1 + √10.

x_2 = (-b - √D)/(2a) = (-(-2) - √40)/(2*1) = (2 - √40)/2 = 1 - √10.

Точки пересечения с осью абсцисс имеют координаты (1 + √10, 0) и (1 - √10, 0).

Середину отрезка можно найти, используя координаты вершины и точек пересечения с осью абцисс:

x = (1 + √10 + 1 - √10)/2 = 1/2.

y = (10 + 0)/2 = 5.

Середина отрезка имеет координаты (1/2, 5).

Таким образом, центр окружности имеет координаты (1/2, 5).

Диаметром окружности является отрезок, проходящий через центр окружности и точки пересечения параболы с осью абцисс. Получаем две точки:

(1 + √10, 0) и (1 - √10, 0).

Длина диаметра равна расстоянию между этими точками:

d = (1 + √10) - (1 - √10) = √10 + √10 = 2√10.

Радиус окружности равен половине длины диаметра:

r = (1/2)(2√10) = √10.

Теперь, используя найденные значения, мы можем записать уравнение окружности:

(x - 1/2)^2 + (y - 5)^2 = (√10)^2.

(x - 1/2)^2 + (y - 5)^2 = 10.

Ответ: Уравнение окружности, диаметром которой служит отрезок, отсекаемый на оси абцисс параболой y=9+2x-x^2​​, составленное в аналитической форме, имеет следующий вид: (x - 1/2)^2 + (y - 5)^2 = 10.
4,6(17 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ