Соглашусь с ответом выше
∠A=40°, ∠B=20°, ∠C=120°
Объяснение:
Дано:
ΔАВС (см. рисунок)
AB>BC>AC
один угол 120°
другой угол 40°
Найти: ∠A=?, ∠B=?, ∠C=?
Решение.
Сумма внутренних углов треугольника равна 180°. Зная значения двух углов находим третий угол Х:
Х+120°+40°=180°
Х=180°-160°=20°
Нам известно все три угла: 20°, 40°, 120°. Остается найти соответствие между значениями углов с углами ∠A, ∠B и ∠C.
Из теоремы косинусов следует, что в треугольнике наибольший угол лежит против наибольшей из сторон. Из AB>BC>AC следует, что наибольшая сторона - это АВ, то ∠C=120°, и наименьшая сторона - это АС, то ∠B=20°. Остается одно, ∠А=40°.
ответ: ∠A=40°, ∠B=20°, ∠C=120°
∠A=40°, ∠B=20°, ∠C=120°
Объяснение:
Дано:
ΔАВС (см. рисунок)
AB>BC>AC
один угол 120°
другой угол 40°
Найти: ∠A=?, ∠B=?, ∠C=?
Решение.
Сумма внутренних углов треугольника равна 180°. Зная значения двух углов находим третий угол Х:
Х+120°+40°=180°
Х=180°-160°=20°
Нам известно все три угла: 20°, 40°, 120°. Остается найти соответствие между значениями углов с углами ∠A, ∠B и ∠C.
Из теоремы косинусов следует, что в треугольнике наибольший угол лежит против наибольшей из сторон. Из AB>BC>AC следует, что наибольшая сторона - это АВ, то ∠C=120°, и наименьшая сторона - это АС, то ∠B=20°. Остается одно, ∠А=40°.
ответ: ∠A=40°, ∠B=20°, ∠C=120°
По теореме косинусов
АВ²=АС²+ВС²-2*АС*ВС*cos30°=16+25-2*4*5*(√3\2)=41-20√3≈6,4.
АВ=√6,4=2,5.
ответ: 2,5 ед.
Объяснение: