6.В треугольниках PQR и CST сторона PR равна CT, сторона QR равна ST. Какое ещё условие должно быть выполнено, чтобы эти треугольники оказались равными по первому признаку?
асательная прямая t к окружности c пересекает окружность в единственной точке t. для сравнения, секущие прямые пересекают окружность в двух точках, в то время как некоторые прямые могут не пересекать окружность совсем. это свойство касательной прямой сохраняется при многих преобразованиях[en], таких как подобие, вращение, параллельный перенос, инверсия и картографическая проекция. говоря техническим языком, эти преобразования не меняют структуру инцидентности касательных прямых и окружностей, даже если сами прямые и окружности деформируются.
радиус окружности, проведённый через точку касания, перпендикулярен касательной прямой. и обратно, перпендикуляр к радиусу в конечной точке (на окружности) является касательной прямой. окружность вместе с касательной прямой имеют осевую симметрию относительно радиуса (к точке касания).
по теореме о степени точкипроизведение длин pm•pn для любого луча pmn равно квадрату pt, длине отрезка от точки p до точки касания (отрезок показан красным цветом).
никакая касательная прямая не может проходить через точку внутри окружности, поскольку любая такая прямая должна быть секущей. в то же время для любой точки, лежащей вне круга, можно построить две проходящие через неё касательные прямые. фигура, состоящая из окружности и двух касательных прямых, также обладает осевой симметрией относительно прямой, соединяющей точку p с центром окружности o (см. рисунок справа). в этом случае отрезки от точки p до двух точек касания имеют одинаковую длину. по теореме о степени точки квадрат длины отрезка до точки касания равен степени точки p относительно окружности c. эта степень равна произведению расстояний от точки p до двух точек пересечения окружности любой секущей линией, проходящей через p.
угол θ между хордой и касательной равен половине дуги, заключённой между концами хорды.
касательная прямая t и точка касания t свойством сопряжённости друг другу; это соответствие можно обобщить в идею о полюсе и поляре. такая же взаимосвязь существует между точкой p вне окружности и секущей линией, соединяющей две точки касания.
если точка p лежит вне окружности с центром o, и если касательные прямые из p касаются окружности в точках t и s, то углы ∠tps и ∠tos в сумме 180°.
если хорда tm проведена из точки касания t прямой p t и ∠ptm ≤ 90°, то ∠ptm = (1/2)∠mot.
Смотри, рисуешь прямоугольную трапецию, в ней прорисовываешь высоту(СО) . Нам известно, что меньшее основание =6, а большее =22. (Меньшее основание обозначим ВС, а большее AD.) Если ты нарисуешь высоту, то у тебя получится прямоугольник и треугольник. Сначала рассмотрим прямоугольник: У этой фигуры стороны попарно равны, значит вс=ad=6 см. Но известно, что AD=22, значит ОD=16. ДАЛЕЕ по теорему Пифагора рассчитаем сторону треугольника СЕ. Так как СЕ - гипотенуза то она равна 12 ( 16*16+20*20=корень из 144=12. Теперь нам известна высота, и мы можем найти площадь трапеции. Площадь трапеции= сумма оснований разделить на два и умножить на высоту= (6+22/2)*12=168 см в квадрате.
асательная прямая t к окружности c пересекает окружность в единственной точке t. для сравнения, секущие прямые пересекают окружность в двух точках, в то время как некоторые прямые могут не пересекать окружность совсем. это свойство касательной прямой сохраняется при многих преобразованиях[en], таких как подобие, вращение, параллельный перенос, инверсия и картографическая проекция. говоря техническим языком, эти преобразования не меняют структуру инцидентности касательных прямых и окружностей, даже если сами прямые и окружности деформируются.
радиус окружности, проведённый через точку касания, перпендикулярен касательной прямой. и обратно, перпендикуляр к радиусу в конечной точке (на окружности) является касательной прямой. окружность вместе с касательной прямой имеют осевую симметрию относительно радиуса (к точке касания).
по теореме о степени точкипроизведение длин pm•pn для любого луча pmn равно квадрату pt, длине отрезка от точки p до точки касания (отрезок показан красным цветом).никакая касательная прямая не может проходить через точку внутри окружности, поскольку любая такая прямая должна быть секущей. в то же время для любой точки, лежащей вне круга, можно построить две проходящие через неё касательные прямые. фигура, состоящая из окружности и двух касательных прямых, также обладает осевой симметрией относительно прямой, соединяющей точку p с центром окружности o (см. рисунок справа). в этом случае отрезки от точки p до двух точек касания имеют одинаковую длину. по теореме о степени точки квадрат длины отрезка до точки касания равен степени точки p относительно окружности c. эта степень равна произведению расстояний от точки p до двух точек пересечения окружности любой секущей линией, проходящей через p.
угол θ между хордой и касательной равен половине дуги, заключённой между концами хорды.касательная прямая t и точка касания t свойством сопряжённости друг другу; это соответствие можно обобщить в идею о полюсе и поляре. такая же взаимосвязь существует между точкой p вне окружности и секущей линией, соединяющей две точки касания.
если точка p лежит вне окружности с центром o, и если касательные прямые из p касаются окружности в точках t и s, то углы ∠tps и ∠tos в сумме 180°.
если хорда tm проведена из точки касания t прямой p t и ∠ptm ≤ 90°, то ∠ptm = (1/2)∠mot.