1) четыре, если исключается ва
риант, когда в любой тройке точ
ки расположены на одной прямой.
2)Беконечное множество, если
хотя бы в одной тройке точки
находятся на одной прямой.
Объяснение:
По условию задачи заданы 4
точки, не лежащие в одной плос
кости. Через любые три точки,
не лежащие на одной прямой,
можно провести плоскость и
притом тоько одну. Сколько
различных таких троек опреде
ляют четыре точки?
Считаем по формуле сочетаний:
С(из 4 по3)=4!/1!3!=4
Четыре различных варианта.
ответ: четыре плоскости, если
ввести оговорку, что любые
три точки не лежат на одной
прямой.
2) Вариант, когда любые из
четырех точек не лежат в од
ной плоскости, не ислючает
возможности расположения
трех из них на одной прямой.
Если любые три точки из за
данных четырех лежат на од
ной прямой, то число плоскос
тей, проходящих через три точ
ки, лежащие на одной прямой
бесконечно.
ответ: бесконечное число
плоскостей.
Нарисуем точку, симметричную O относительно BC:
продолжим OK на отрезок, равный OK, за точку K. Обозначим полученную точку L.
Теперь необходимо доказать, что ablc - вписанный
пусть ∠obk = a
Δobl - равнобедренный, тк bk - высота и медиана =>
∠kbl = ∠obk = a
из Δbnc ∠nbc = 90 - ∠bcn
из Δakc ∠kac = 90 - ∠kcn
∠kcn и ∠bcn - один и тот же угол => ∠kac = ∠nbc = a
∠lac = ∠cbl = a => они опираются на одну дугу и ablc - описанный => точка l - лежит на окружности, описанной около abc.
оставшиеся 2 точки доказываются абсолютно аналогично