М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Darkness171
Darkness171
25.03.2022 15:53 •  Геометрия

Дан четырёхугольник ABCD, у которого AB = DC, BC = AD, ∠BAC = 32°, ∠BCA = 28°. Чему равна градусная мера угла CAD?

РЕБЯТ НУЖНО ПОДРОБНОЕ РЕШЕНИЕ А НЕ ТОЛЬКО ОТВЕТ. Я ЗНАЮ ЧТО ОТВЕТ БУДЕТ 28, ДАЙТЕ РЕШЕНИЕ​


Дан четырёхугольник ABCD, у которого AB = DC, BC = AD, ∠BAC = 32°, ∠BCA = 28°. Чему равна градусная

👇
Ответ:
alinakyberskaya
alinakyberskaya
25.03.2022

28

Объяснение:

Онлайн мектеп так показал

4,7(46 оценок)
Открыть все ответы
Ответ:
sofiotap3
sofiotap3
25.03.2022
Пусть у нас есть отрезок AB. Считаем, что он расположен в 1-й четверти координатной сетки и не параллелен осям координат (прочие положения отрезка рассматриваются аналогично).
Координаты концов отрезка: A(x₁, y₁) и B(x₂, y₂).
Допустим, что x₂>x₁.
Пусть C - середина отрезка AB с координатами (x, y).
Требуется выразить x и y через координаты точек A и B.

Определение координаты x.
Из точек A, B и C отпустим перпендикуляры на отрезок OX, точки пересечения с осью OX обозначим A₁, B₁ и C₁.

AA₁⊥OX
BB⊥OX
CC⊥OX

Т.к. C - середина отрезка AB, то AC=BC. Т.к. AA₁||BB₁||CC₁, то по теореме Фалеса A₁C₁=B₁C₁.
Значит, C₁ - середина отрезка A₁B₁.

Координаты точки A₁ равны (x₁;0).
Координаты точки B₁ равны (x₂;0).
Координаты точки C₁ равны (x;0).

Длина отрезка A₁C₁ равна x-x₁.
Длина отрезка B₁C₁ равна x₂-x.

Эти длины равны, т.е. x-x₁=x₂-x ⇔ 2x=x₁+x₂ ⇔ x = (x₁+x₂) / 2.

Т.о., координата x середины отрезка есть полусумма координат x концов отрезка.

Определение координаты y.
Выполняется аналогично, выполняя проекцию отрезка AB на координатную ось OY. y = (y₁+y₂) / 2

Т.о., координаты середины отрезка AB есть полусумма соответствующих координат концов отрезка.

C(x;y) = ((x₁+x₂) / 2; (y₁+y₂) / 2)
4,4(97 оценок)
Ответ:
arsenandreeev
arsenandreeev
25.03.2022
Когда грани пирамиды равнонаклонены к основанию, то
1) в основание можно вписать окружность (для треугольника это всегда можно сделать, но тут речь идет о любом многоугольнике в основании)
2) вершина пирамиды проектируется в центр вписанной в основание окружности
3) все апофемы (высоты боковых граней) равны между собой и их проекции на основание равны радиусу вписанной в основание окружности.
Все это легко увидеть, если заметить, что апофемы вместе с их проекциями на основание и высотой пирамиды образуют равные прямоугольные треугольники. (Они все имеют общий катет - высоту пирамиды, и равные острые углы - поскольку грани имеют равный наклон).
Радиус вписанной в основание окружности r = (5 + 12 - 13)/2 = 2;
Отсюда апофема равна 6 (потому что 2^2 + (4√2)^2 = 36)
далее можно двумя
1) Sбок = (5 + 12 + 13)*6/2 = 90;
2) Sбок = Sосн/cos(Ф); Sосн = 5*12/2 = 30; cos(Ф) = 2/6 = 1/3; Ф - угол наклона боковой грани. И снова получается 90 :) удивительно...
4,5(53 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ