Из условия известно, что один угол параллелограмма в 2 раза больше другого. Для того, чтобы найти меньший угол параллелограмма мы должны вспомнить свойства углов параллелограмма и чему равна сумма углов четырехугольника.
Итак, у параллелограмма противоположные углы равны между собой.
Итак, одну пара углов обозначим с переменной x, тогда вторая пара углов равна 2x.
Сумма углов четырехугольника равна 360°.
x + x + 2x + 2x = 360;
6x = 360;
x = 360 : 6;
x = 60° меньший угол параллелограмма,
Тогда больший равен 60 * 2 = 120°.
Рассмотрим треугольник, образованный диагоналями и меньшей стороной прямоугольника. Диагонали прямоугольника равны и точкой пересечения делятся пополам. Таким образом этот треугольник равнобедренный с основанием, совпадающим с меньшей стороной прямоугольника.
Если обозначить угол меньшего треугольника напротив основания за а, то а=180-х-х=180-2х по теореме о сумме углов в треугольнике. С другой стороны, этот угол смежный с углом, обозначенным как у, то есть а=180-у. Таким образом, 180-у=180-2х, или 2х=у.
Сопоставляя выражения 2х=у и х=у-70, получаем систему уравнений, откуда находим искомый угол х = 70.
ответ: х=70°