В равнобедренном треугольнике ABC угол В равен 30°, AB=BC=6, проведены высота CD треугольника ABC и высота DE треугольника BDC. Найдите BE.
——————————
ответ: 4,5 (ед. длины)
Объяснение:
Из ∆ ВDC катет DC противолежит углу 30° ⇒ DC=ВС:2= 6:2=3 (свойство).
Высота прямоугольного треугольник, проведенная к гипотенузе, делит его на треугольники, подобные друг другу и исходному треугольнику. Сумма острых углов прямоугольного треугольника 90°.
В равнобедренной трапеции АВСD диагонали взаимно перпендикулярны. Значит треугольники АОD и ВОС прямоугольные и равнобедренные. Высота трапеции равна сумме высот этих треугольников, которые можно найти по свойству высоты из прямого угла к гипотенузе: h=√d*e, где h - высота, а d и e - отрезки гипотенузы, на которые гипотенуза делится этой высотой. В нашем случае эти отрезки равны, так как треугольники равнобедренные. тогда h1=√(9*9)=9, а h2=√(6*6)=6. Высота трапеции равна H=9+6=15. Тогда площадь трапеции равна S=(AB+CD)*Н/2=(12+16)*15/2=210. ответ: Н=210 ед².
В равнобедренном треугольнике ABC угол В равен 30°, AB=BC=6, проведены высота CD треугольника ABC и высота DE треугольника BDC. Найдите BE.
——————————
ответ: 4,5 (ед. длины)
Объяснение:
Из ∆ ВDC катет DC противолежит углу 30° ⇒ DC=ВС:2= 6:2=3 (свойство).
Высота прямоугольного треугольник, проведенная к гипотенузе, делит его на треугольники, подобные друг другу и исходному треугольнику. Сумма острых углов прямоугольного треугольника 90°.
Угол BСD=90°-∠DBC=90°-30°=60°, угол ЕDC=30°.
CD - гипотенуза прямоугольного ∆ СЕD, катет ЕС противолежит углу 30°,⇒ ЕС=СD:2=3:2=1,5 ⇒
ВЕ=6-1.5=4,5
Или:
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией катета на неё.
СD²=BC•EC. Из найденного СD=3.
3²=6•CE ⇒ CE=1,5 a BE=BC-CE=6-1,5=4,5