М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
илья1949
илья1949
22.05.2021 10:13 •  Геометрия

Конспект на тему площади
По учебнику Атанасян, Бутузов
Можно не по учебнику
8 класс​

👇
Ответ:
Fixir2
Fixir2
22.05.2021

Через точку во внутренней области равностороннего треугольника проведены две прямые, параллельные двум сторонам треугольника. На какие фигуры разбивается этими прямыми данный треугольник?

2. АВСD - параллелограмм, АD = 2АВ, АМ - биссектриса угла ВАD. Докажите, что часть отрезка АМ, лежащая во внутренней области параллелограмма АВСD, равна части, лежащей во внешней области.

3. Точка D между точками А и С на прямой АС. Найти длину АС, если АD = 5 см, DС = 5,6 см.

Вспомнить измерения отрезков.

III. Изучение нового материала.

Ввести понятие площади многоугольника и основные свойства площадей можно в форме короткой лекции с использованием иллюстративного материала. При этом полезно отметить, что вывод формул для вычисления площадей различных многоугольников будет основан на двух свойствах площадей, аналогичных свойствам длин отрезков:

1. Равные многоугольники имеют равные площади.

2. Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников.

Эти свойства принимаются на основе наглядных представлений об измерении площадей.

3. Площадь квадрата равна квадрату его стороны.

Материал этого пункта не является обязательным. Следует на конкретных примерах разъяснить свойство 3, а более подготовленным учащимся можно предложить изучить доказательство самостоятельно по учебнику.

Полезно привести ряд примеров, связанных с практической необходимостью измерения площадей. Так, площадь зеркала водохранилища нужно знать его проектировщикам, в

Объяснение:

4,6(5 оценок)
Открыть все ответы
Ответ:
Мижоп
Мижоп
22.05.2021
Пусть градусная мера одной части будет х.
Тогда дуга АВ содержит 3х,  дуга ВС - 4х и  АС-5х. 
Окружность содержит 360°, ⇒
3х+4х+5х=360° ⇒
х=30°
1) Дуга АВ равна: 30°*3=90° На нее опирается  вписанный угол АСВ⇒
По свойству градусной величины вписанного угла он равен половине этой дуги:
90°:2=45°
2) Дуга ВС равна 30°*4=120°
На эту дугу опирается вписанный угол САВ;  он равен её половине:
120°:2=60°
3)Дуга АС равна  30°*5=150°
На эту дугу опирается угол АВС, и он  равен её половине:
150°:2=75°
Углы треугольника АВС равны половинам градусных мер дуг, на которые они опираются: ∠С=45°, ∠ А= 60°, ∠ В=75° 

точки a, b, c, лежащие на окружности, разбивают ее на дуги, градусные меры которых относятся как 3:
4,4(81 оценок)
Ответ:
mishaniy
mishaniy
22.05.2021
В квадрате диагонали перпендикулярны друг другу.
Если есть точка М(х₁ у₁) и прямая Ах + Ву + С =  0, то уравнение перпендикулярной прямой: А(у - у₁) - В(х - х₁) = 0.
Подставляем известные данные: точка А(5;-4) и прямая - диагональ ВД: х - 7у - 8 = 0.
Уравнение диагонали АС: 1*(у - (-4)) - (-7)*(х - 5) = 0.
у + 4 + 7х - 35 = 0,
АС: 7х + у - 31 = 0.
Эта же прямая в виду уравнения с коэффициентом:
у = -7х + 31.

В уравнении типа у = кх + в коэффициент к - это тангенс угла наклона прямой к оси "х".
Стороны квадрата проходят под углом +45° и -45° к диагонали.
Используем формулу тангенса суммы (разности) углов:
tg( \alpha +- \beta )= \frac{tg \alpha +-tg \beta }{1-+tg \alpha *tg \beta }.
Используя к = -7 для АС, находим "к" для сторон АВ и АД:
tg( \alpha +45)= \frac{-7+1}{1-(-7)*1} = \frac{-6}{8} =- \frac{3}{4} .
tg( \alpha -45)= \frac{tg \alpha -tg45}{1+tg \alpha *tg45} = \frac{-7-1}{1+(-7)*1}= \frac{-8}{-6}= \frac{4}{3}.

Теперь переходим к уравнениям сторон.
У параллельных прямых коэффициент к одинаков.
Найдём координаты точки С, симметричной точка А относительно прямой ВД.
Алгоритм решения :
1) Находим прямую (диагональ АС), которая перпендикулярна прямой ВД.
2) Находим точку К пересечения прямых - это будет центр квадрата.
3) Точка К является серединой отрезка АС. Нам известны координаты середины и одного из концов. По формулам координат середины отрезка находим точку С.

1) Уравнение АС найдено.
2) ВД:   х - 7у - 8 = 0             -7х + 49у + 56 = 0
    АС: 7х + у - 31 = 0             7х +      у - 31 = 0
                                               --------------------------
                                                        50у + 25 = 0
                                                            у = -25 / 50 = -1/2.
                                         х = 7у + 8 = 7*(-1/2) + 8 = -3,5 + 8 = 4,5.
Получили координаты точки К(4,5; -0,5).

3) Хс = 2Хк - Ха = 2*4,5 - 5 = 9 - 5 = 4.
     Ус = 2Ук - Уа = 2*(-0,5) - (-4) = -1 + 4 = 3.

Уравнения сторон:
АВ: -4 = (-3/4)*5 + в      в = -4 + (15/4) = (-16/4) + (15/4) = -1/4.
АВ: у = (-3/4)х - (1/4).

СД: 3 = (-3/4)*4 + в       в = 3 + (12/4) = 3 + 3 = 6.
СД: у = (-3/4)х + 6.

АД: -4 = (4/3)*5 + в       в = -4 - (20/3) = (-12/3) - (20/3) = -32/3
АД: у = (4/3)х - (32/3).

ВС: 3 = (4/3)*4 + в        в= 3 - (6/3) = (9 - 16)/3 = -7/3.
ВС: у = (4/3)х - (7/3).
4,8(72 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ