Объяснение:
так думаю.
Точка пересечения серединных перпендикуляров треугольника равноудалена от его вершин. Значит любая точка, лежащая на перпендикуляре, проведенном из точки пересечения серединных перпендикуляров, тоже равноудалена от вершин треугольника (равенство треугольников, образованных серединными перпендикулярами и общей стороной - перпендикуляром, т. е. по двум сторонам и углу между ними) .
Может теорема такая?
Точка равноудалена от сторон треугольника, если это точка принадлежит перпендикуляру, проведенному из точки пересечения серединных перпендикуляров треугольника. Может так звучит?
нравится8
--------------
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°.
Следовательно, биссектрисы этих углов пересекутся под углом 90°
В параллелограмме противолежащие углы равны.
∠bad=∠bcd , следовательно, биссектрисы этих углов параллельны и равны. Проведем биссектрису am=ck=12
Биссектрисы bl и am пересекутся в точке О под прямым углом.
Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник (доказать сумеете).
ab=al
ab=bm
am ⊥ bl ⇒ параллелограмм abmk- ромб.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
Так как стороны ромба равны, то
4аb²=bl²+am²
4аb²=8²+12²=64+144=208
ab²=52
ab=2√13 ad=3/2 ab ⇒ ad=(2√13)*3/2=3√13
Площадь ромба равна половине произведения его диагоналей.
S abml=8*12:2=48
Высота параллелограмма abcd является и высотой ромба abml, это отрезок hl, проведенный перпендикулярно стороне ромба.
S abmd=lh*bm
lh=S:bm
lh=48: 2√13=24:√13
Площадь параллелограмма равна произведению высоты и стороны, к которой она проведена.
S abcd=hl*ad
S abcd=(24:√13)*3√13=72 (единиц площади)