Условия не достаточно. Вокруг а1b1ab можно описать окружность у которой ab -диаметр. Отрезок а1b1-равен радиусу. Угол a1bb1 равен 30 градусам (половина центрального угла). Если угол abc=сab, то abc равен 60.
Значит угол abc - любой из диапазона (30, 90) градусов.
Угол стремится к 90, когда второй угол стремится к 30, т.е. треугольник становится прямоугольным, а b1a1 его высота к гипотенузе (точки b и b1 совпадают и b1a1 равен ba/2)
Вот если треугольник не просто острый, а равнобедренный, то abc=60 градусам.
Чуть позже объясню почему. (рисунок 1)
Соединим середины сторон 4 угольника ABCD.
Проведем диагональ AC
Очевидно что MN-средняя линия треугольника ABC,откуда
MN||AC, также PQ-cредняя линия треугольника ACD ,то PQ||AC.
То выходит что MN||PQ. Анологично при проведении другой диагонали докажем что MQ||NP. То MNPQ-параллелограмм.
Рассмотрим наконец 6 угольник проведем в нем диагональ D (2 рисунок)
Она бьет его на 2 четырехугольника.
На ней отметим точку S,являющуюся серединой диагонали.
То из выше сказанного A1A2A3S-параллелограмм.
Понятно , что для точек A1 A2 A3 cуществует одна и только одна точка
H, для которой A1A2A3H-параллелограмм. А значит точка H совпадает с точкой S. H=S Тк второй такой точки не существует.
Рассуждая анологично для второго 4 угольника. Покажем что
M=S.
А значит формально говоря: H=M
ЧТД.