Объяснение:
На продолжение отрезка AD опустим высоту из точки С в точку H.
Имеем прямоугольный треугольник ACH катет которого СН противолежит углу А=30. а гипотенуза АС=8.
Отсюда СН=АС:2=8:2-4 (по св-ву прямоугольного треугольника с углом 30)
Имеем сторону параллелограмма AD=7 и его высоту СН=4, отсюда S(ABCD)=AD*CH=7*4=28
по св-ву параллелограмма, его диагонали делятся точкой пересечения пополам: AO = OC, OB = OD, значит ВО является медианой тр-ка ABC.
По св-ву медианы тр-ка, она разбивает его на два равновеликих (по площади) треугольника, отсюда АВО=СВО
АВСДА1В1С1Д1 - усеченная пирамида , в основаниях квадраты АВСД со стороной =10, А1В1С1Д1 со стороной=2, ОО1-высота пирамиды=7, АС=корень(АД в квадрате+СД в квадрате)=корень(100+100)=10*корень2, А1С1=корень(А1Д1 в квадрате+С1Д1 в квадрате)=корень(4+4)=2*корень2,
рассматриваем АА1С1С как равнобокую трапецию, АА1=СС1, проводим высоты А1К и С1Н на АС, КА1С1С-прямоугольник А1С1=КН=2*корень2, А1К=С1Н=ОО1=7-высота, треугольник АА1К=треугольник НС1С как прямоугольные по гипотенузе и катету, АК=СН=(АС-КН)/2=(10*корень2-2*корень2)/2=4*корень2
АН=АК+КН=4*корень2+2*корень2=6*корень2, треугольник АС1Н прямоугольный, АС1-диагональ пирамиды=корень(АН в квадрате+С1Н в квадрате)=корень(72+49)=11