Диагонали ромба точкой пересечения делятся пополам (как и у параллелограмма)
Диагонали ромба взаимно перпендикулярны
Диагонали ромба являются биссектрисами его углов
из треуг.BOA: угол BAO=30, катет BO = 4/2 = 2 (катет против угла в 30 град.=половине гипотенузы) и по т.Пифагора второй катет = корень(4^2-2^2) = 2корень(3)
следовательно, диагонали ромба равны
BD = 2BO = 4
AC = 2AO = 4корень(3)
AC1^2 = AC^2 + CC1^2 = 4*4*3 + 6*6 = 4*(12+9) = 4*21
AC1 = 2корень(21)
B1D^2 = BD^2 + CC1^2 = 4+36 = 40
B1D = 2корень(10)
A D
B C
Если сторона AD больше каждой соседней стороны (в данном случае AB и CD) на 2 см, это значит, что стороны AB и CD на 2 см меньше стороны AD.
Если сторона AD на 4 см меньше противолежащей стороны BC, это значит, что сторона BC на 4 см больше стороны AD.
1) 12-2=10 (см) - стороны AB, CD.
2) 12+4=16 (см) - сторона BC.
Сумма длин всех сторон - это периметр, то есть складываем все 4 стороны:
3) 12+10+10+16=48 (см) - периметр.
ответ: 48 см.