Площади подобных многоугольников относятся как квадрат коэффициента подобия k² = S₂/S₁ = 10/9 k = √(10/9) = √10/3 Периметры подобных многоугольников относятся как коэффициент подобия k = P₂/P₁ = √10/3 P₂ = P₁*√10/3 И по условию разность периметров равна 10 см P₂ - P₁ = 10
P₁*√10/3 - P₁ = 10 P₁(√10/3 - 1) = 10 P₁ = 10/(√10/3 - 1) Можно избавиться от иррациональности в знаменателе, домножив верх и низ дроби на (√10/3 + 1) P₁ = 10*(√10/3 + 1)/((√10/3)² - 1) = 10*(√10/3 + 1)/(10/9 - 1) = 10*(√10/3 + 1)*9 = 30√10 + 90 см
Сторона вписанного правильного многоугольника образует с радиусами описанной около него окружности равносторонний треугольник. В нашем случае это треугольник с боковыми сторонами, равными 4√3 и основанием, равным 12см. По теореме косинусов найдем угол при вершине этого треугольника: Cosα = (b²+c²-a²)/2bc. (α - между b и c). В нашем случае: Cosα=(2*(4√3)²-12²)/(2*4√3)²=-48/(2*48)=-(1/2). То есть центральный угол тупой и равен 120°. Следовательно, число сторон нашего вписанного многоугольника равно 360°/120°=3. Это ответ.
P.S. Можно проверить по формуле радиуса описанной около правильного треугольника окружности: R=(√3/3)*a. В нашем случае R=(√3/3)*12=4√3, что соответствует условию задачи.
так можуть
тому що 32 - найбільша сторана ( або основа)
14 плюс 18 дорівнює 32 см
значить трикутник існує і довжини можуть дорівнювати 14 см 18 см і 32 см