Так как в условии не указано, к какой из сторон проведена высота, то возможны ТРИ случая ( так как в треугольнике три стороны.
Площадь треугольника равна S = (1/2)*a*h, где h - высота треугольника, а - сторона, к которой проведена высота.
1) S = (1/2)*85*36 = 1530 см².
2) S = (1/2)*60*36 = 1080 см².
3) Найдем третью сторону треугольника из двух прямоугольных треугольников, на которые делит данный треугольник высота, проведенная к третьей стороне.
По Пифагору одна часть третьей стороны равна √(85²-36²) = 77 см.
Вторая часть третьей стороны равна √(60²-36²) \= 48 см.
Третья сторона равна 77+48 = 125 см. Тогда
S = (1/2)*125*36 = 2250 см².
ответ: S1 = 1530см², S2 = 1080см², S3 = 2250см².
Все грани куба - квадраты. Тогда ребро куба:
а = √9 = 3 см
V = a³ = 3 = 27 см³
2.
а = 2 см - ребро основания призмы,
α = 30° - угол в основании,
h = 3 см - высота призмы.
V = Sосн · h
Sосн = a²·sinα = 4 · 1/2 = 2 см²
V = 2 · 3 = 6 см³
3.
В основании правильной треугольной пирамиды - правильный треугольник со стороной а = 5 см.
ОС = а√3/3 = 5√3/3 см как радиус описанной окружности.
ΔSOC - прямоугольный, равнобедренный, значит высота пирамиды
SO = ОС = 5√3/3 см
V = 1/3 · Sосн · SO
V = 1/3 · a²√3/4 · SO
V = 1/3 · 25√3/4 · 5√3/3 = 125/12 см³