Чертим параллелограмм с острым углом слева внизу, а с большими сторонами горизонтально. Обозначаем вершины начиная с нижней левой по часовой стрелке A,B,C,D. Обозначим АВ=CD=4X, BC=AD=9X. Пусть дана биссектриса угла A. Она пересекает сторону ВС в точке Е. Проводим EF параллельно АВ. ABCD -ромб, АЕ его диагональ. Тогда: AB=BE=EF=AF=CD=4X, EC=FD=9X-4X=5X. Пусть АЕ=Y. Периметр треугольника AB+BE+AE=4X+4X+Y Периметр оставшейся части AE+EC+CD+AD=Y+5X+4X+9X Разность периметров (Y+18X)-(Y+8X)=10X. 10X=10, X=1. Периметр параллелограмма 2*(4X+9X)=26X=26. Вроде так.
Объяснение:
У коло можна вписати тільки рівнобічну трапецію, або описати коло можна тільки навколо рівнобічної трапеції.
Кут А (знизу, з лівого боку)= куту D(знизу з правого боку),
Кут B(зверху з лівого боку) = куту C(зверху з правого боку).
Кут А = куту D = 70+70 = 140
Кут В = куту С = 360 - 140 = 220
220 : 2 = 110
Кут В = 110, кут С = 110, кут C = 70, кут D = 70