Будем считать, что условие я, всё-таки, понял правильно.... Смотрим рисунок: В прямоугольном Δ-ке середина гипотенузы (на рисунке - О) есть центр описанной окружности, значит ОА=ОС=ОВ Если прямой угол делится в отношении 1:2, то ∠АСО=30°, ∠ОСВ=60° Т.к. ОС=ОВ, то ΔСОВ - равнобедренный, ∠ОСВ=∠ОВС=60°, но тогда также ∠СОВ=60°, таким образом, ΔСОВ не только равнобедренный, но и раносторонний: ОС=ОВ=ВС=10 см ∠САВ=30°, значит гипотенуза АВ=2ВС=20 см Меньшая средняя линия равна половине меньшей стороны: ОМ=ВС/2=5 см
АВС - треугольник С =90 град СК - медиана (АК+КВ) уг КСВ : уг. АСК = 1 : 2 Обозначим через х коэфф.пропорции и составим уравение х+2х=90 3х=90 х=30 Следовательно, КСВ=30 град АСК= 60 град Наименьшая сторона лежим против меньшего угла. Рассмотрим треугольник СКМ (КМ перпендикулярна СВ и делит СВ пополам, то есть является средней линией треугольника. Треугольник КСМ прямоугольный. В прямоугольном треугольнике катет лежащий против угла в 30 градусов равен половине гипотенузы. СК - гипотенуза, СК=10 см (по условию). Значит КМ=5 см Медиана прямоугольного треугольника, проведенная из вершины прямого угла равна половине гипотенузы. Значит, гипотенуза АВ= 2*10=20 см
Основания трапеции 16 и 24
Объяснение:
Введем коефициент пропорциональности x для основ трапеции тогда
a = 2x, b = 3x. P трапеции = a + b + 2c. a и b - основания трапеции.
Боковые стороны c = 10 по условию
60 = 5x + 20;
x = 8;
a = 8 * 2 = 16
b = 8 * 3 = 24