М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lime89cc
lime89cc
29.12.2022 22:36 •  Геометрия

В правильной усеченной пирамиде стороны оснований равны 4см и 6см, ее апофема - 2 корень из 3 см. Найдите площадь полной поверхности этой усеченной пирамиды, если ее основания: а) четырехугольники; б) треугольники.


В правильной усеченной пирамиде стороны оснований равны 4см и 6см, ее апофема - 2 корень из 3 см. На

👇
Ответ:
казактілі3
казактілі3
29.12.2022

а) 52+40√3 см²

б) 43√3см²

Объяснение:

а)

Дано:

ABCDA1B1C1D1- усеченная пирамида.

АВ=ВС=СD=DA=4см

А1В1=В1С1=С1D1=D1A1=6см

КК1=2√3- апофема

Sпол.=?

Решение

SABCD=AB²=4²=16 см² площадь верхнего основания.

SA1B1C1D1=A1B1²=6²=36 см² площадь нижнего основания.

Формула нахождения площади боковой поверхности:

Sбок=1/2*(Р1+Р2)*k, где Р1-периметр верхнего основания, Р2- периметр нижнего основания, k- апофема.

k=KK1=2√3см. по условию

Р1=4*АВ=4*4=16см периметр верхнего основания

Р2=4*А1В1=4*6=24 см периметр нижнего основания.

Sбок=2√3*(16+24)/2=2√3*40/2=40√3 см² площадь боковой поверхности пирамиды.

Sпол.=SABCD+SA1B1C1D1+Sбок=

=16+36+40√3=52+40√3 см² площадь полной поверхности пирамиды.

ответ:52+40√3 см² площадь полной поверхности пирамиды.

б)

Дано:

ABCA1B1C1 - усеченная пирамида.

АВ=ВС=АС=4см

А1В1=В1С1=А1С1=6см

КК1=2√3см апофема

Sпол=?

Решение

SABC=AB²√3/4=4²√3/4=4√3см² площадь верхнего основания.

SA1B1C1=A1B1²√3/4=6²√3/4=9√3 см² площадь нижнего основания

РАВС=3*АВ=3*4=12см периметр верхнего основания

РА1В1С1=3*А1В1=3*6=18см периметр нижнего основания.

Sбок=КК1*РАВС+РА1В1С1)/2=2√3(18+12)/2=

=2√3*30/2=30√3 см² площадь боковой поверхности пирамиды.

Sпол=SABC+SA1B1C1+Sбок=

=30√3+4√3+9√3=43√3см² площадь полной поверхности пирамиды

ответ: 43√3см²


В правильной усеченной пирамиде стороны оснований равны 4см и 6см, ее апофема - 2 корень из 3 см. На
В правильной усеченной пирамиде стороны оснований равны 4см и 6см, ее апофема - 2 корень из 3 см. На
4,6(83 оценок)
Открыть все ответы
Ответ:
MATVEYPRO26
MATVEYPRO26
29.12.2022

ответ: (sin^2t-1)/(cos^2t-1) + tgt•ctgt=

=(sin^2t-sin^2t-cos^2t)/(cos^2t-sin^2t-cos^2t)+1=

=(-cos^2t/-sin^2t)  +1=(cos^2t/sin^2t)+1=(cos^2t+sin^2t)/sin^2t=1/sin^2t. Это первое)

2 не смогла).

cos^2t-ctg^2t)/(sin^2t-tg^2t)

cos^2t-ctg^2t=cos^2t-cos^2t/sin^2t=(cos^2t*sin^2t-cos^2t)/sin^2t=

=(-cos^2t(1-sin^2t))/sin^2t=-cos^4t/sin^2t  

sin^2t-tg^2t=sin^2t-sin^2t/cos^2t=(sin^2t*cos^2t-sin^2t)/cos^2t=

=(-sin^2t(1-cos^2t))/cos^2t=-sin^4t/cos^2t  

-cos^4t/sin^2t:(-sin^4t/cos^2t)=cos^6t/sin^6t=ctg^6t. Это третье).

Объяснение:

4,5(58 оценок)
Ответ:
барни6
барни6
29.12.2022

41° 57° 82°

Объяснение:

Будем использовать следующие значения для сторон треугольника АВС: АВ=с, ВС=а, СА=b и его углов:

<А=а, <В=b, <C=y (a, b, y : Альфа, Бэта, Гама.)

Дано:

а=4, b=5, c=6.

Найти: a, b, y -?

Пусть b - наибольшая сторона, b<a+c.

По теореме косинусов находим наибольший угол b,

[Не обязательно писать, для ориентира: Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.]

{b}^{2} = {a}^{2} + {c}^{2} - 2ac \times cos \betab

2

=a

2

+c

2

−2ac×cosβ

\begin{gathered} \cos\beta = \frac{a {}^{2} + c {}^{2} - b {}^{2} }{2ac} = \frac{16 + 36 - 25}{48} = 0,5625 = \\ = \frac{9}{16} \end{gathered}

cosβ=

2ac

a

2

+c

2

−b

2

=

48

16+36−25

=0,5625=

=

16

9

При основного тригонометрического тождества найдём Sin B

\begin{gathered}sin {}^{2} \beta + cos {}^{2} \beta = 1 \\ sin {}^{2} \beta = 1 - cos {}^{2} \beta \\ sin \beta = \sqrt{1 - \frac{81}{256} } = \\ = \sqrt{ \frac{175}{256} } = \frac{5 \sqrt{7} }{16} \end{gathered}

sin

2

β+cos

2

β=1

sin

2

β=1−cos

2

β

sinβ=

1−

256

81

=

=

256

175

=

16

5

7

С теоремы синусов найдём углы треугольника:

\frac{a}{ \sin( \alpha ) } = \frac{b}{ \sin( \beta ) } = \frac{c}{ \sin( \gamma ) }

sin(α)

a

=

sin(β)

b

=

sin(γ)

c

Отсюда,

\sin( \alpha ) = \frac{a \sin( \beta ) }{b} = \frac{5 \sqrt{7} }{4} \times \frac{1}{5} = \frac{ \sqrt{7} }{4}sin(α)=

b

asin(β)

=

4

5

7

×

5

1

=

4

7

\sin( \gamma ) = \frac{c\sin( \beta ) }{b} = \frac{5 \sqrt{7} }{ 16} \times \frac{6}{5} = \frac{3 \sqrt{7} }{8}sin(γ)=

b

csin(β)

=

16

5

7

×

5

6

=

8

3

7

С таблиц находим градусную меру углов:

а≈41°

b≈57°

Тогда,

у≈82°

ответ: 41° 57° 82°

4,6(25 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ