М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Дано: АС= 12, ВС= 5, АВ = 13 Найти: sin В, cos В, tg В, ctg В.

Решение:

sin⁡В=АС/АВ=12/13

cos⁡В=ВС/АВ=5/13

tg⁡В=АC/ВC=12/5

ctg⁡В=ВC/АC=5/12

👇
Открыть все ответы
Ответ:
valikotura
valikotura
27.08.2021
R1, r2, r3 - радиусы вписанных окружностей треугольников СНА, CНB и АВС соответственно.
В прямоугольном тр-ке высота, опущенная из прямого угла, делит его на два подобных тр-ка, которые, в свою очередь, подобны главному тр-ку. Значит отношение радиусов вписанных окружностей равно отношению соответственных сторон треугольников.
Пусть гипотенузы тр-ков СНА и CHВ равны: АС=5х и ВС=12х, тогда гипотенуза тр-ка АВС: АВ=√(АС²+ВС²)=√(5²х²+12²х²)=√169х²=13х.
r1:r2:r3=АС:ВС:АВ=5х:12х:13х=5:12:13  ⇒
r3=13 см - это ответ.
4,6(23 оценок)
Ответ:
MaxKryaks
MaxKryaks
27.08.2021
Точка О2 - центр вписанной окружности в  тр-ник АВС. Точка О1 - центр заданной окружности. 
Около тр-ка АВС опишем окружность.
АО2, ВО2 и СО2 - биссектрисы соответствующих углов.
Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К. 
∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2.
∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине.
Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный.
КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности.
Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и  в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают. 
О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности.
Доказано.
Две прямые, касающиеся данной окружности в точках а и в, пересекаются в точке с. докажите, что центр
4,7(62 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ