М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
55555336
55555336
03.05.2022 13:08 •  Геометрия

один из катетов прямоугольного треугольника равен 12 см, второй неизвестен, но на 8 см меньше чем гипотенуза.Найти гипотенузу?

👇
Ответ:
relinaro09
relinaro09
03.05.2022
1. Пусть неизвестный катет будет х, тогда гипотенуза равняется х+8 (так как по условию она на 8 больше, чем катет х);

2. Так как треугольник прямоугольный, по теореме Пифагора найдём х:

(х+8)^2 = х^2 + 144
х^2 + 16х + 64 = х^2 + 144, х^2 сокращается, тогда:

16х+64 = 144
16х = 80
х = 5см, катет х = 5см, тогда гипотенуза равна х+8= 5+8 = 13см;

ответ: гипотенуза равна 15см.
4,6(49 оценок)
Открыть все ответы
Ответ:
svinka03
svinka03
03.05.2022

     Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°.  ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла,  дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)

==========

Как вариант решения можно  доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.


Вравнобедренной трапеции диагональ перпендикулярна боковой стороне. найдите площадь трапеции, если б
4,4(96 оценок)
Ответ:
лера25jd
лера25jd
03.05.2022
A>0; b>0

( \frac{a+b}{2} )^2=0,36ab
(a+b)² = 1,44ab
a² + 2ab + b²  - 1,44ab = 0
a² + 0,56ab + b²  = 0      |  /b²
( \frac{a}{b} )^2 + 0,56( \frac{a}{b}) + 1 = 0 \\ \\ D = (0,56)^2 - 4*1*1=-3,6864\ \textless \ 0

С такой формулировкой задача решения НЕ ИМЕЕТ

Задача имеет решение, если сформулирована по-другому:
Найдите отношение двух положительных чисел, если произведение этих чисел составляет 36% от квадрата полусуммы этих чисел
0,36( \frac{a+b}{2} )^2 = ab
0,09(a + b)² = ab
0,09a² + 0,18ab + 0,09b² - ab = 0
0,09a² - 0,82ab + 0,09b² = 0
9a² - 82ab + 9b² = 0      |  /b²
9( \frac{a}{b} )^2 - 82( \frac{a}{b} ) + 9 = 0
D/4 = 41² - 9*9 = 1600 = 40²
( \frac{a}{b} ) = \frac{41б40}{9}
1) \frac{a}{b} = \frac{1}{9} \\ \\ 2) \frac{a}{b} = 9

Проверка:
Пусть а=1 и b=9
ab = 9
( \frac{1+9}{2} )^2=25
\frac{9}{25} *100\% = 36\%

Произведение от квадрата полусуммы составляет 36%
4,8(24 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ