R(радиус описанной окр) =авс/4Sтриугольника. То есть сначала найдем третью сторону триуг: по теор Пифагора: 144+81=225. это корень из 15 следовательно третья сторона равна 15 см. ищем Sтриугольника. S=0.5ab следовательно равно 0.5*12*9=54. теперь ищем радиус=9*12*15/4*54=7.5см. Теперь найдем радиус вписанной окружности : r=Sтр/p Ытриугольника уже известна. Найдем полупериметр: 12+15+9/2=18см. следовательно ищем радиус: 54/18=3 см. ответ : радиус описанной окр =7.5см, радиус вписанной окр = 3 см.
Высота равноудалена от вершин треугольника. Потому, что все боковые ребра образуют с высотой одинаковые углы, и поэтому равны по длине. Это вообще касается любого отрезка из данной точки, имеющего заданный угол с перпендикуляром к плоскости, проходящим через эту точку. Иначе говоря, вершина пирамиды проектируется на центр описанной окружности. Причем раз нам задан угол (45 градусов) и высота, то радиус описанной окружности равен высоте, то есть 16.
Теперь нам надо сосчитать площадь равнобедренного треугольника с углом 120 градусов, вписанного в окружность радиуса 16.
Можно,конечно, сосчитать тупо все длины, а можно сообразить, что вместе с радиусами, проведенными в концы основания треугольник образует ромб, (как бы составленный из 2 равносторонних треугольников, хотя даже это не обязательно - можно просто сказать, что центральные углы сторон получаются по 60 градусов). Поэтому боковые стороны треугольника равны 16, а площадь S = 1/2*(16^2)*sin(120) = 64*корень(3)