Пусть у нас треугольник ABC. угол С= 90(прямоугольный).
Т. к. треугольник равнобедренный Угол А + угол В= 90
угол А = 90/2= 45=В(т. к. треугольник равнобедренный)
И ВСЁ)
△ABC;
А(2;-2;2), В(0;2;0), С(0;0;-2).
Найти:P△ABC = ?
Решение:Чтобы найти периметр треугольника, нужно найти расстояния от точек, из которых состоит данный треугольник.
Расстояние от точки А до В - длина АВ.
Расстояние от точки В до С - длина ВС.
Расстояние о точки А до С - длина АС.
Вычисляется это расстояние следующим образом:
d - расстояние.
d = √((В(х) - A(x))² + (B(y) - A(y))² + (B(z) - A(z))²).
Сейчас показала формулу на примере нахождения расстояния от точки А до В.
Сделаем также, только представляю вместо значения х, у и z, данные значения:
d = √((0 - 2)² + (2 - (-2))² + (0 - 2)²) = √(4 + 16 + 4) = √24 = 2√6 - длина АВ.
d = √((0 - 0)² + (0 - (-2))² + (-2 - 0)²) = √(0 + 4 + 4) = √8 = 2√2 - длина ВС.
d = √((0 - 2)² + (0 - (-2))² + (-2 - 2)²) = √(4 + 4 + 16) = √24 = 2√6 - длина АС.
Вывод: этот треугольник - равнобедренный, так как АВ = АС = 2√6
P = a + b + c = 2√6 + 2√6 + 2√2 = 4√6 + 2√2 = 2√2 ⋅ (2√3 + 1)
ответ: 2√2 ⋅ (2√3 + 1).∠AВC = 60°.
Объяснение:
Пусть в равнобедренном треугольнике АRP (АR = RP) угол ∠А = α. => ∠RPA = ∠ARP = α.
Внешний угол этого треугольника ∠PRS равен сумме двух внутренних, не смежных с ним, углов: ∠PRS = 2α.
В равнобедренном треугольнике RPS (RP = PS)
∠PSR = ∠PRS = 2α. ∠RPS = 180° - 4α (по сумме внутренних углов треугольника).
Углы APR, RPS и SPQ составляют развернутый угол и значит APR + RPS + SPQ = 180°.
∠SPQ = 180° - (180° - 4α) - α = 3α.
В равнобедренном треугольнике PSQ (PS = SQ) углы при основании равны => ∠PQS = ∠SPQ = 3α.
Угол PSQ = 180° - 6α (по сумме внутренних углов треугольника).
Углы PSR, PSQ и QSC составляют развернутый угол и значит
∠QSC = 180° - 2α - (180° - 6α) = 4α.
В равнобедренном треугольнике SQC (QC = SQ) углы при основании равны => ∠QCS = ∠QSC = 4α. Тогда ∠SQC = 180° - 8α.
Углы PQS, SQC и CQB составляют развернутый угол и значит
∠CQB = 180° - 3α - (180° - 8α) = 5α.
В равнобедренном треугольнике QCB (QC = CB) углы при основании равны => ∠QBC = 5α.
Тогда в четырехугольнике SQBC ∠SQB = ∠SQC + ∠CQB или
∠SQB = 180° - 8α + 5α = 180° - 3α.
Сумма внутренних углов четырехугольника равна 360°.
Тогда ∠QSC+∠SQB+∠QBC+∠SCB = 360°. Или
4α +180° - 3α +5α+108° = 360°. => 6α = 72° => α = 12°.
∠AВC = ∠QBC = 5α = 60°.
ну если он равнобедренный.то углы(А и В)равны
так как он прямоугольный(пусть угол С=90)
то 2углаА=90
тогда каждый из углов по 45 градусов